Matemática Discreta

Pedro Hokama

Fontes

- Gomide, Anamaria; Stolfi, Jorge. Elementos de Matematica Discreta para Computação.
- Rosen, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th Edition, 2019.

1/43 2/43

Teoria dos Conjuntos (Revisão)

- Um conjunto é um conceito primitivo, que informalmente pode ser entendido como uma coleção não ordenada de entidades distintas, chamadas de elementos do conjunto.
- Dizemos que um elemento x pertence a um conjunto A se x é um elemento de A. Denotamos este fato por

$$x \in A$$

• Para denotar que *x* **não pertence** a *A*, ou seja, que *x* não é um elemento do conjunto *A*, escrevemos

$$x \notin A$$

• A notação $x, y, z \in A$ é muito usada como uma abreviação de $x \in A$ e $y \in A$ e $z \in A$

Teoria dos Conjuntos (Revisão)

 Se x pertence a um conjunto A, diz-se também que A tem (ou possui) x, e escreve-se

$$A \ni x$$

• A negação desta afirmação (A **não tem** ou **não possui** x) é denotada por

$$A \not\ni x$$

• Não é correto dizer que A "contém" x, pois este termo é usado em matemática com um sentido diferente.

Teoria dos Conjuntos (Revisão)

- Podemos especificar um conjunto de diversas formas. Se um conjunto tem poucos elementos, podemos listá-los, um a um, em qualquer ordem, entre chaves '{}'.
- Por exemplo, o conjunto cujos elementos s\u00e3o os n\u00eameros inteiros 2, 3 e 5 pode ser escrito \u00e42, 3, 5\u00e3.
- Assim, por exemplo, temos que

 $3 \in \{2, 3, 5\}$

mas

 $4 \notin \{2, 3, 5\}$.

Teoria dos Conjuntos (Revisão)

- Outra maneira de especificar um conjunto é através das propriedades de seus elementos.
- Para tanto, usamos a notação $\{x: P(x)\}$, onde x é uma variável arbitrária e P(x) uma afirmação matemática que depende do valor de x.
- Por exemplo, outra maneira de definir o conjunto $\{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ é

 $\{x : x \text{ \'e um n\'umero inteiro e } -5 < x < 5\}$

• Comumente também é usado o simbolo '|' em vez de ':' para significar "tais que".

5/43 6/43

Teoria dos Conjuntos (Revisão)

Existem alguns conjuntos de números que são muito usados em matemática, e tem notações convencionais bem estabelecidas:

- o conjunto dos **números inteiros** \mathbb{Z} ,
- o conjunto dos **números naturais** $\mathbb{N} = \{ x : x \in \mathbb{Z} \text{ e } x \geq 0 \},$
- o conjunto dos **números racionais** $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ e } b \neq 0 \right\}$, e
- o conjunto dos **números reais** \mathbb{R} .
- o conjunto dos **números complexos** $\mathbb{C} = \{x + y\mathbf{i} : x, y \in \mathbb{R} \}$, em que $\mathbf{i} = \sqrt{-1}$.

Observação: Alguns autores entendem que o conjunto dos números naturais não inclui o zero, talvez por que em várias línguas não falamos "tenho zero bois". Em latim nem sequer existia uma palavra para esse número, que não pode ser escrito em algarismos romanos.

Teoria dos Conjuntos (Revisão)

Exercício

Escreva explicitamente os elementos dos seguintes conjuntos:

- ② $A = \{ x : x \in \mathbb{Z}, 2 \le x \le 20 \text{ e } x \text{ \'e primo } \}.$

7/43 8/43

Definições circulares e contraditórias

- A definição de um conjunto pode usar outros conjuntos
 - "seja X o conjunto de todos os elementos que estão no conjunto Y mas não no conjunto Z".
- Porém, deve-se tomar cuidado para evitar definições circulares, que podem não ter sentido.
 - ▶ "seja X o conjunto de todos os elementos que não pertencem a X"
- Esta "definição" não faz sentido pois diz que um elemento que está em X não está em X, e vice-versa.

Definições circulares e contraditórias

- Suponha que o barbeiro de um quartel recebeu a ordem de fazer a barba de todos os que n\u00e3o fizessem sua pr\u00f3pria barba, e apenas esses.
- O que o barbeiro faz com a sua barba?
- Este contra-exemplo teve um papel muito importante no desenvolvimento da teoria de conjuntos.
- Ele é conhecido pelo nome Paradoxo de Russel, por ter sido observado pelo matemático inglês Bertrand Russel (1872–1970).
- Ele é conhecido também como Paradoxo do Barbeiro.

9/43 10/43

Definições circulares e contraditórias

- Por outro lado, há definições circulares de conjuntos que são perfeitamente válidas.
- Por exemplo, considere o conjunto de inteiros X que possui o inteiro 1, não possui o inteiro 0, possui x + 2 e x - 2 qualquer que seja o elemento x de X.
- Pode-se verificar que o único conjunto X com estas propriedades é o conjunto dos inteiros ímpares.
- Para entender porque esta definição é válida vamos precisar do conceito de indução matemática, que será visto posteriormente.

Igualdade de conjuntos

- Por definição, um conjunto A é igual a um conjunto B se, e somente se, todo elemento de A é elemento de B, e todo elemento de B é elemento de A.
- Esta condição, denotada por A = B, significa que A, B são o mesmo conjunto.
- Dito de outra forma, dois conjuntos A e B são diferentes (A ≠ B) se, e somente se, existe um elemento de A que não pertence a B, ou um elemento de B que não pertence a A.
- Observe que, como os conjuntos não são ordenados, o conjunto {1, 2, 3} é igual ao conjunto {3, 2, 1}.

11/43 12/43

Conjunto vazio

- É possível definir conjuntos sem elementos.
- Dizemos que tal conjunto é vazio.
- Por exemplo, considere o conjunto $A = \{x : x \in \mathbb{R} \text{ e } x = x + 1\}.$
- Todos os conjuntos vazios s\(\tilde{a}\) ou seja existe um \(\tilde{u}\) nico conjunto vazio, que \(\tilde{e}\) geralmente denotado por \(\theta\).

Relação de inclusão

- Sejam A e B dois conjuntos. Dizemos que A é um subconjunto de B se, e somente se, todo elemento de A é um elemento de B.
- Neste caso, dizemos também que A está contido em B, ou que B contém A.
 Denotamos esta condição por A ⊆ B ou B ⊇ A.
- Se existe um elemento de A que n\u00e3o pertence a B, ent\u00e3o A n\u00e3o \u00e9 subconjunto de B, e escrevemos A \u00ed B.
- De acordo com esta definição, todo conjunto está contido em si próprio e contém o conjunto vazio; ou seja, A ⊆ A e Ø ⊆ A, para qualquer conjunto A.
- Se A ⊆ B mas A ≠ B, dizemos que A é um sub-conjunto próprio de B, que denotamos por A ⊂ B ou B ⊃ A.
- Analogamente, A ⊄ B significa que A não é um subconjunto próprio de B.

13/43

Cardinalidade

- Informalmente, dizemos que um conjunto A é **finito** se ele tem um número finito $n \in \mathbb{N}$ de elementos.
- Este número é a **cardinalidade** de *A*, denotada por |*A*| ou # *A*.
- Observe que |A| = 0 se e somente se $A = \emptyset$.
- Dizemos que um conjunto é **infinito** se ele não é finito.
- \bullet Os conjuntos $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q},\,e\;\mathbb{R}$ são infinitos.
- Conjuntos infinitos não podem ter seus elementos listados explicitamente.
- Informalmente, é comum usar '...' nesses casos, por exemplo
 - $\mathbb{N} = \{0, 1, 2, \ldots\}$ $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, +1, +2, +3, \ldots\}$

Entretanto, esta notação deve ser evitada pois pode ser ambígua. Por exemplo, o que é o conjunto {2, 3, 5, 7, ...}?

Operações com conjuntos

União e interseção

Para os próximos conceitos sejam A e B dois conjuntos.

 A união de A e B, denotada por A ∪ B, é o conjunto de todos os elementos que estão em pelo menos um dos conjuntos, A ou B.

Exemplo: Se $A = \{1, 2, 3\}$ e $B = \{2, 3, 4, 5\}$ então $A \cup B = \{1, 2, 3, 4, 5\}$.

 A intersecção de A e B, denotada por A ∩ B, é o conjunto de todos os elementos que estão em ambos os conjuntos, A e B.

Exemplo: Se $A = \{1, 2, 3\}$ e $B = \{2, 3, 4, 5\}$ então $A \cap B = \{2, 3\}$.

- Se A ∩ B = ∅ dizemos que os conjuntos A e B são disjuntos, ou não tem intersecção, ou não se intersectam.
- Diz também que três ou mais conjuntos são disjuntos dois a dois se todos os pares desses conjuntos são disjuntos.

15/43 16/43

Operações com conjuntos

Diferença, universo, e complemento

- A diferença de A e B é o conjunto de todos os elementos de A que não estão em B. Este conjunto é também chamado A menos B, ou o complemento de B em A, e é denotado por A – B ou A \ B.
- Em certos casos, é conveniente supor que todos os elementos de todos os conjuntos que nos interessam pertencem a um **conjunto universal** ou **universo**, que denotaremos por \mathcal{U} . Se A é o conjunto universo \mathcal{U} , então $\mathcal{U} B$ é chamado o **complemento** de B e denotado por \overline{B} ou B^c .
- Observe que se $A \subseteq B$ então $A \cup B = B$, $A \cap B = A$ e $\overline{B} \subseteq \overline{A}$.

Operações com conjuntos

Diferença, universo, e complemento

Exercício: Dê exemplos em que $(A \cup B) - B = A$ e $(A \cup B) - B \neq A$

Exercício: Sejam A e B dois conjuntos finitos quaisquer. Encontre uma fórmula matemática que relaciona |A|, |B|, $|A \cap B|$ e $|A \cup B|$.

17/43 18/43

Operações com conjuntos

Diferença simétrica

Outra operação entre conjuntos é a **diferença simétrica**, denotada por $A \oplus B$ ou $A \triangle B$, que consiste de todos os elementos que estão em **exatamente** em um dos dois conjuntos. Isto é,

$$A \triangle B = (A \setminus B) \cup (B \setminus A) \tag{1}$$

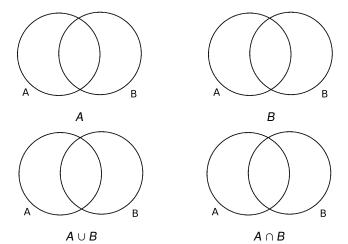
Exercício: Se $A \triangle B = A$ o que se pode dizer dos conjuntos A e B?

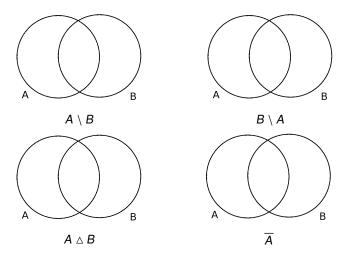
Operações com conjuntos

Diagrama de Venn

Esta representação gráfica para conjuntos é chamada de **diagrama de Venn**, por ter sido introduzida pelo matemático inglês John Venn (1834–1923).

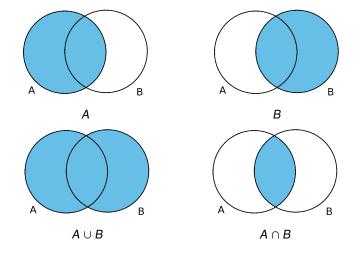
19/43 20/43

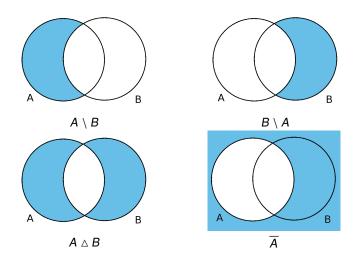




22/43

21/43





23/43 24/43

Operações com conjuntos

Propriedades das operações com conjuntos

- Comutatividade:
 - $A \cup B = B \cup A$.
 - $A \cap B = B \cap A$.
- Associatividade:
 - $A \cup (B \cup C) = (A \cup B) \cup C.$
 - $A \cap (B \cap C) = (A \cap B) \cap C.$
- Distributividade:
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Operações com conjuntos

Propriedades das operações com conjuntos

- Propriedades do conjunto universal:
 - $A \cup \mathcal{U} = \mathcal{U}$.
 - ▶ $A \cap \mathcal{U} = A$.
- Propriedades do conjunto vazio:
 - $A \cup \emptyset = A$.
 - $A \cap \emptyset = \emptyset$.

Operações com conjuntos

Propriedades das operações com conjuntos

- Idempotência:
 - $A \cup A = A$.
 - $A \cap A = A$.
- Leis de De Morgan:
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}.$
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}.$

Estas leis levam o nome do matemático inglês Augustus de Morgan (1806–1871), mas eram conhecidas desde a Antiguidade.

- Propriedades do complemento:
 - $\overline{\overline{A}} = A$.
 - $A \cup \overline{A} = \mathcal{U}$.
 - $A \cap \overline{A} = \emptyset.$
 - $\overline{\mathcal{U}} = \emptyset.$
 - $ightharpoonup \overline{\emptyset} = \mathcal{U}.$

25/43 26/43

Exercício: Usando diagramas de Venn, verifique que a diferença simétrica também é uma operação associativa e comutativa; isto é, que $A \triangle B = B \triangle A$ e $(A \triangle B) \triangle C = A \triangle (B \triangle C)$, para quaisquer conjuntos A, B e C.

27/43 28/43

Exercício: Use diagramas de Venn para verificar as seguintes identidades:

Exercício: Sejam A, B e C três conjuntos finitos quaiquer. Encontre uma fórmula matemática para $|A \cup B \cup C|$ em função de |A|, |B|, |C|, $|A \cap B|$, $|A \cap C|$, $|B \cap C|$ e $|A \cap B \cap C|$.

29/43 30/43

Conjuntos de conjuntos

- Conjuntos podem ser elementos de outros conjuntos.
- Por exemplo, o conjunto

$$A = \{\emptyset, \{2,3\}, \{2,4\}, \{2,4,7\}\}$$

é um conjunto com quatro elementos.

- Se B é o conjunto {2,3}, temos que B é elemento de A (B ∈ A), mas B não é sub-conjunto de A (B ⊈ A).
- Note que ∅ é elemento de A e também subconjunto de A, enquanto que {2} não é nem uma coisa nem outra.
- Em particular, o conjunto $A = \{\emptyset\}$ **não** é vazio, pois ele tem um elemento o conjunto vazio. Observe que |A| = 1, enquanto que $|\emptyset| = 0$.

Conjunto potência

• O conjunto de todos os subconjuntos de um conjunto A é chamado de **conjunto potência** de A, e denotado por $\mathbb{P}(A)$.

```
Exemplo: Se A = \{1, 2, 3\} então \mathbb{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.
```

- Observe que se $A=\emptyset$ então $\mathbb{P}(A)=\{\emptyset\}$, e se $A=\{\emptyset\}$ então $\mathbb{P}(A)=\{\emptyset,\{\emptyset\}\}$.
- Se A é um conjunto finito, quanto é $|\mathbb{P}(A)|$?
- Se A é um conjunto finito, então $\left|\mathbb{P}(A)\right|=2^{|A|}$. Por esta razão, muitos autores denotam o conjunto potência de A por 2^A .

31/43 32/43

Partição

- Seja A um conjunto, e P um conjunto cujos elementos são sub-conjuntos de A (isto é, P ⊆ P(A)).
- Dizemos que P é uma partição de A se os elementos de P são não vazios, disjuntos dois a dois, e a união de todos os elementos de P é A.
- Nesse caso, cada elemento de P é também chamado de uma parte ou bloco da partição.

Exemplo: Se $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, o conjunto

$$P = \{\{1, 2, 5, 6, 7\}, \{3\}, \{4, 8, 10\}, \{9\}\}$$

é uma partição de A.

Exercício: Quais dos conjuntos abaixo são partições do conjunto $\mathbb Z$ dos números inteiros?

- a) $\{P, I\}$ onde P é o conjunto dos pares e I é o conjunto dos ímpares.
- b) $\{\mathbb{Z}^+, \mathbb{Z}^-\}$ onde \mathbb{Z}^+ é o conjunto dos inteiros positivos, e \mathbb{Z}^- é o conjunto dos inteiros negativos.
- c) $\{R_0, R_1, R_2\}$ onde, para $i = \{0, 1, 2\}$, R_i é o conjunto dos inteiros que tem resto i na divisão por 3.
- d) {A, B, C} onde A é o conjunto dos inteiros menores que −100, B é o conjunto dos inteiros com valor absoluto menor ou igual a 100, e C é o conjunto dos inteiros maiores que 100.
- e) $\{P_0, P_1, P_2, \dots, P_9\}$, onde P_k é o conjunto de todos os inteiros cujo quadrado termina com o algarismo k. (Por exemplo, $P_6 = \{4, -4, 6, -6, 14, \dots\}$.)
- f) $\{\{0\}\} \cup \{P_k : k \in \mathbb{N}\}$, onde P_k é o conjunto de todos os inteiros cujo valor absoluto está entre 2^k (inclusive) e 2^{k+1} (exclusive).

33/43 34/43

Produto cartesiano

- Indicamos por (a, b) um par ordenado de elementos, no qual a é o primeiro elemento e b é o segundo elemento.
- Um par ordenado n\u00e3o deve ser confundido com um conjunto de dois elementos, pois a ordem \u00e9 importante (por exemplo, o par (10, 20) \u00e9 diferente do par (20, 10)) e os dois elementos podem ser iguais (como por exemplo no par (10, 10)).
- Dois pares ordenados (a, b) e (c, d) são iguais (são o mesmo par) se, e somente se, a = c e b = d.

Produto cartesiano

Produto cartesiano de dois conjuntos

- Sejam $A \in B$ dois conjuntos. O **produto cartesiano**, denotado por $A \times B$, é o conjunto de todos os pares ordenados (a, b) com $a \in A \in B$.
- Como os pares são ordenados, temos que A × B ≠ B × A (exceto quando A = B ou A = Ø ou B = Ø).

Exercício: Quanto elementos tem o conjunto $A \times B$ se o conjunto A tem m elementos, e o conjunto B tem n?

35/43 36/43

Produto cartesiano

Produto cartesiano de vários conjuntos

- Definimos uma **ênupla ordenada**, ou simplesmente **ênupla**, como sendo uma sequência finita de m elementos $(x_1, x_2, ..., x_m)$.
- Observe que, como em um par ordenado, a ordem dos elementos é importante, e pode haver repetições. Assim, por exemplo, as (10, 20, 20), (10, 10, 20) e (20, 10, 20) são três ênuplas diferentes.
- Uma ênupla com dois elementos pode ser considerada um par ordenado, e é geralmente chamada por esse nome.
- Para m ≥ 3 usam-se os nomes tripla, quádrupla, quíntupla, sêxtupla, séptupla, óctupla, etc..
- Não há um nome especial consagrado quando m = 1.
- Na escrita usam-se também as notações 2-upla, 3-upla, etc., e m-upla quando m é genérico.

Produto cartesiano

Produto cartesiano de vários conjuntos

- Em particular, uma 1-upla é uma sequência (a_1) com apenas um elemento. Note que a 1-upla (10) não é a mesma coisa que o inteiro 10.
- Há uma única 0-upla, a ênupla vazia, denotada por ().
- O **produto cartesiano** de m conjuntos A_1, A_2, \ldots, A_m , denotado por $A_1 \times A_2 \times \cdots \times A_m$, é o conjunto das m-uplas (a_1, a_2, \ldots, a_m) , com $a_i \in A_i$ para $i = 1, 2, \ldots, m$.
- Se todos os conjuntos A₁, A₂,..., A_m são o mesmo conjunto A, o produto é denotado por A^m. Por exemplo, se A = {10, 20, 30},

$$A^3 = \{(10, 10, 10), (10, 10, 20), (10, 10, 30), (10, 20, 10), \dots, (30, 30, 30)\}$$

e A^1 é o conjunto das 1-uplas $\{(10), (20), (30)\}.$

• Para qualquer conjunto A, A⁰ é o conjunto {()} que só tem a ênupla vazia.

37/43 38/43

Produto cartesiano

Produto cartesiano de conjunto consigo mesmo

- Se todos os conjuntos A_1, A_2, \ldots, A_m são o mesmo conjunto, o produto cartesiano $A_1 \times A_2 \times \ldots \times A_m$ é denotado por A^m .
- Por exemplo, se $A = \{10, 20, 30\}$ temos

$$A^{3} = \{(10, 10, 10), (10, 10, 20), (10, 10, 30), (10, 20, 10), \dots, (30, 30, 30)\}$$

$$A^{2} = \{(10, 10), (10, 20), (10, 30), (20, 10), \dots, (30, 30)\}$$

$$A^{1} = \{(10), (20), (30)\}$$

$$A^{0} = \{()\}$$

Intervalos

- Em matemática, um intervalo real ou simplesmente intervalo geralmente significa o conjunto de todos os números reais em ℝ compreendidos entre dois valores específicos. Há quatro variações principais deste conceito:
- $(a,b) = \{x : x \in \mathbb{R} \text{ e } a < x < b\}$ (intervalo aberto),
- $[a,b] = \{x : x \in \mathbb{R} \text{ e } a \leq x \leq b\}$ (intervalo fechado),
- $(a,b] = \{x : x \in \mathbb{R} \text{ e } a < x \leq b\}$ (intervalo fechado à direita),
- $[a,b) = \{x : x \in \mathbb{R} \text{ e } a \le x < b\}$ (intervalo fechado à esquerda),
- a e b são números reais, chamados extremos, limites ou pontas do intervalo.
- Intervalos com as formas acima são ditos limitados. O termo finito também é usado, embora esses conjuntos em geral tenham infinitos elementos.

39/43 40/43

Intervalos

Intervalos

• Também é comum usarmos intervalos semi-infinitos que são limitados em apenas um lado.

$$\bullet (-\infty, a) = \{x : x \in \mathbb{R} \text{ e } x < a\},$$

$$\bullet \ (-\infty, a] = \{x : x \in \mathbb{R} \ e \ x \le a\},$$

$$\bullet \ [a, +\infty) = \{x : x \in \mathbb{R} \ e \ a \le x\}.$$

Exercício: Explique o significado das notações [a, b], (a, b), [a, b) e (a, b] quando a = b e quando a > b.

Exercício: Descreva os conjuntos abaixo:

①
$$(-\infty, 2) \cap [-1, 3]$$

② $(0, 5]$

41/43 42/43

Caixas

- O produto cartesiano $[10, 20] \times [2, 4]$ é um retângulo no plano cartesiano \mathbb{R}^2 .
- O produto cartesiano $[10,20] \times [2,4] \times [60,70]$ é um paralelepípedo no espaço cartesiano \mathbb{R}^3 .