
18 B-Trees

B-trees are balanced search trees designed to work well on disk drives or other
direct-access secondary storage devices. B-trees are similar to red-black trees
(Chapter 13), but they are better at minimizing the number of operations that access
disks. (We often say just <disk= instead of <disk drive.=) Many database systems
use B-trees, or variants of B-trees, to store information.
B-trees differ from red-black trees in that B-tree nodes may have many children,

from a few to thousands. That is, the <branching factor= of a B-tree can be quite
large, although it usually depends on characteristics of the disk drive used. B-trees
are similar to red-black trees in that every n-node B-tree has height O.lg n/, so that
B-trees can implement many dynamic-set operations in O.lg n/ time. But a B-tree
has a larger branching factor than a red-black tree, so the base of the logarithm that
expresses its height is larger, and hence its height can be considerably lower.
B-trees generalize binary search trees in a natural manner. Figure 18.1 shows a

simple B-tree. If an internal B-tree node x contains x:n keys, then x has x:n C 1
children. The keys in node x serve as dividing points separating the range of keys
handled by x into x:n C 1 subranges, each handled by one child of x . A search for
a key in a B-tree makes an .x:n C 1/-way decision based on comparisons with the
x:n keys stored at node x . An internal node contains pointers to its children, but a
leaf node does not.
Section 18.1 gives a precise deûnition of B-trees and proves that the height of

a B-tree grows only logarithmically with the number of nodes it contains. Sec-
tion 18.2 describes how to search for a key and insert a key into a B-tree, and
Section 18.3 discusses deletion. Before proceeding, however, we need to ask why
we evaluate data structures designed to work on a disk drive differently from data
structures designed to work in main random-access memory.

498 Chapter 18 B-Trees

M

D H Q T X

B C F G J K L N P R S V W Y Z

T: root

Figure 18.1 A B-tree whose keys are the consonants of English. An internal node x containing
x:n keys has x:n C 1 children. All leaves are at the same depth in the tree. The blue nodes are
examined in a search for the letter R.

Data structures on secondary storage

Computer systems take advantage of various technologies that provide memory
capacity. The main memory of a computer system normally consists of silicon
memory chips. This technology is typically more than an order of magnitude more
expensive per bit stored than magnetic storage technology, such as tapes or disk
drives. Most computer systems also have secondary storage based on solid-state
drives (SSDs) or magnetic disk drives. The amount of such secondary storage often
exceeds the amount of primary memory by one to two orders of magnitude. SSDs
have faster access times than magnetic disk drives, which are mechanical devices.
In recent years, SSD capacities have increased while their prices have decreased.
Magnetic disk drives typically have much higher capacities than SSDs, and they
remain a more cost-effective means for storing massive amounts of information.
Disk drives that store several terabytes 1 can be found for under $100.
Figure 18.2 shows a typical disk drive. The drive consists of one or more plat-

ters, which rotate at a constant speed around a common spindle. A magnetizable
material covers the surface of each platter. The drive reads and writes each plat-
ter by a head at the end of an arm. The arms can move their heads toward or
away from the spindle. The surface that passes underneath a given head when it is
stationary is called a track.

Although disk drives are cheaper and have higher capacity than main memory,
they are much, much slower because they have moving mechanical parts. The
mechanical motion has two components: platter rotation and arm movement. As of
this writing, commodity disk drives rotate at speeds of 5400315,000 revolutions per
minute (RPM). Typical speeds are 15,000 RPM in server-grade drives, 7200 RPM

1 When specifying disk capacities, one terabyte is one trillion bytes, rather than 2 40 bytes.

Chapter 18 B-Trees 499

platter track

arms

read/write
head

spindle

Figure 18.2 A typical magnetic disk drive. It consists of one or more platters covered with a
magnetizable material (two platters are shown here) that rotate around a spindle. Each platter is read
and written with a head, shown in red, at the end of an arm. Arms rotate around a common pivot
axis. A track, drawn in blue, is the surface that passes beneath the read/write head when the head is
stationary.

in drives for desktops, and 5400 RPM in drives for laptops. Although 7200 RPM
may seem fast, one rotation takes 8:33 milliseconds, which is over 5 orders of
magnitude longer than the 50 nanosecond access times (more or less) commonly
found for main memory. In other words, if a computer waits a full rotation for a
particular item to come under the read/write head, it could access main memory
more than 100,000 times during that span. The average wait is only half a rotation,
but still, the difference in access times for main memory compared with disk drives
is enormous. Moving the arms also takes some time. As of this writing, average
access times for commodity disk drives are around 4 milliseconds.

In order to amortize the time spent waiting for mechanical movements, also
known as latency, disk drives access not just one item but several at a time. Infor-
mation is divided into a number of equal-sized blocks of bits that appear consecu-
tively within tracks, and each disk read or write is of one or more entire blocks. 2

Typical disk drives have block sizes running from 512 to 4096 bytes. Once the
read/write head is positioned correctly and the platter has rotated to the beginning
of the desired block, reading or writing a magnetic disk drive is entirely electronic
(aside from the rotation of the platter), and the disk drive can quickly read or write
large amounts of data.

2 SSDs also exhibit greater latency than main memory and access data in blocks.

500 Chapter 18 B-Trees

Often, accessing a block of information and reading it from a disk drive takes
longer than processing all the information read. For this reason, in this chapter
we’ll look separately at the two principal components of the running time:

 the number of disk accesses, and

 the CPU (computing) time.

We measure the number of disk accesses in terms of the number of blocks of infor-
mation that need to be read from or written to the disk drive. Although disk-access
time is not constant4it depends on the distance between the current track and the
desired track and also on the initial rotational position of the platters4the number
of blocks read or written provides a good ûrst-order approximation of the total time
spent accessing the disk drive.
In a typical B-tree application, the amount of data handled is so large that all

the data do not ût into main memory at once. The B-tree algorithms copy selected
blocks from disk into main memory as needed and write back onto disk the blocks
that have changed. B-tree algorithms keep only a constant number of blocks in
main memory at any time, and thus the size of main memory does not limit the size
of B-trees that can be handled.
B-tree procedures need to be able to read information from disk into main mem-

ory and write information from main memory to disk. Consider some object x . If x
is currently in the computer’s main memory, then the code can refer to the attributes
of x as usual: x:key, for example. If x resides on disk, however, then the procedure
must perform the operation DISK-READ.x/ to read the block containing object x
into main memory before it can refer to x ’s attributes. (Assume that if x is already
in main memory, then DISK-READ .x/ requires no disk accesses: it is a <no-op.=)
Similarly, procedures call DISK-WRITE .x/ to save any changes that have been
made to the attributes of object x by writing to disk the block containing x . Thus,
the typical pattern for working with an object is as follows:

x D a pointer to some object
DISK-READ .x/
operations that access and/or modify the attributes of x
DISK-WRITE .x/ // omitted if no attributes of x were changed
other operations that access but do not modify attributes of x

The system can keep only a limited number of blocks in main memory at any one
time. Our B-tree algorithms assume that the system automatically üushes from
main memory blocks that are no longer in use.
Since in most systems the running time of a B-tree algorithm depends primar-

ily on the number of DISK-READ and DISK-WRITE operations it performs, we

18.1 Definition of B-trees 501

1000

1001

1 node,
1000 keys

1001 nodes,
1,001,000 keys

1,002,001 nodes,
1,002,001,000 keys

1000

1001

1000 1000

1001

…
1001

1000 1000 1000 …

T: root

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x
is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

typically want each of these operations to read or write as much information as
possible. Thus, a B-tree node is usually as large as a whole disk block, and this
size limits the number of children a B-tree node can have.
Large B-trees stored on disk drives often have branching factors between 50

and 2000, depending on the size of a key relative to the size of a block. A large
branching factor dramatically reduces both the height of the tree and the number of
disk accesses required to ûnd any key. Figure 18.3 shows a B-tree with a branching
factor of 1001 and height 2 that can store over one billion keys. Nevertheless, if the
root node is kept permanently in main memory, at most two disk accesses sufûce
to ûnd any key in this tree.

18.1 Definition of B-trees

To keep things simple, let’s assume, as we have for binary search trees and red-
black trees, that any satellite information associated with a key resides in the same
node as the key. In practice, you might actually store with each key just a pointer
to another disk block containing the satellite information for that key. The pseu-
docode in this chapter implicitly assumes that the satellite information associated
with a key, or the pointer to such satellite information, travels with the key when-
ever the key is moved from node to node. A common variant on a B-tree, known
as a B C -tree, stores all the satellite information in the leaves and stores only keys
and child pointers in the internal nodes, thus maximizing the branching factor of
the internal nodes.

A B-tree T is a rooted tree with root T: root having the following properties:

502 Chapter 18 B-Trees

1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x ,

b. the x:n keys themselves, x: key 1 ; x: key 2 ; : : : ; x: key x:n , stored in monotoni-
cally increasing order, so that x: key 1 හ x: key 2 හ    හ x: key x:n ,

c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal
node.

2. Each internal node x also contains x:n C 1 pointers x:c 1 ; x:c 2 ; : : : ; x:c x:nC1

to its children. Leaf nodes have no children, and so their c i attributes are unde-
ûned.

3. The keys x: key i separate the ranges of keys stored in each subtree: if k i is any
key stored in the subtree with root x:c i , then

k 1 හ x: key 1 හ k 2 හ x:key 2 හ    හ x: key x:n හ k x:nC1 :

4. All leaves have the same depth, which is the tree’s height h.

5. Nodes have lower and upper bounds on the number of keys they can contain,
expressed in terms of a ûxed integer t  2 called the minimum degree of the
B-tree:

a. Every node other than the root must have at least t  1 keys. Every internal
node other than the root thus has at least t children. If the tree is nonempty,
the root must have at least one key.

b. Every node may contain at most 2t  1 keys. Therefore, an internal node
may have at most 2t children. We say that a node is full if it contains exactly
2t  1 keys. 3

The simplest B-tree occurs when t D 2. Every internal node then has either 2,
3, or 4 children, and it is a 2-3-4 tree. In practice, however, much larger values of t
yield B-trees with smaller height.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is propor-
tional to the height of the B-tree. The following theorem bounds the worst-case
height of a B-tree.

3 Another common variant on a B-tree, known as a B  -tree, requires each internal node to be at
least 2=3 full, rather than at least half full, as a B-tree requires.

18.1 Definition of B-trees 503

1

depth
number
of nodes

3 2t 2

1

2

0 1

2

2t … …

t 3 1 t 3 1

t t

t 3 1 t 3 1 t 3 1 t 3 1

t t t t

t 3 1 t 3 1 … t 3 1 t 3 1 … t 3 1 t 3 1 … t 3 1 t 3 1 …

T: root

Figure 18.4 A B-tree of height 3 containing a minimum possible number of keys. Shown inside
each node x is x:n.

Theorem 18.1
If n  1, then for any n-key B-tree T of height h and minimum degree t  2,

h හ log t
n C 1

2
:

Proof By deûnition, the root of a nonempty B-tree T contains at least one key,
and all other nodes contain at least t  1 keys. Let h be the height of T . Then T
contains at least 2 nodes at depth 1, at least 2t nodes at depth 2, at least 2t 2 nodes
at depth 3, and so on, until at depth h, it has at least 2t h1 nodes. Figure 18.4
illustrates such a tree for h D 3. The number n of keys therefore satisûes the
inequality

n  1 C .t  1/
h X

i D1

2t i 1

D 1 C 2.t  1/

Ï
t h  1

t  1

Ð

(by equation (A.6) on page 1142)

D 2t h  1 ;

so that t h හ .n C 1/=2. Taking base-t logarithms of both sides proves the theo-
rem.

You can see the power of B-trees as compared with red-black trees. Although
the height of the tree grows as O.log n/ in both cases (recall that t is a constant),
for B-trees the base of the logarithm can be many times larger. Thus, B-trees save

504 Chapter 18 B-Trees

a factor of about lg t over red-black trees in the number of nodes examined for
most tree operations. Because examining an arbitrary node in a tree usually entails
accessing the disk, B-trees avoid a substantial number of disk accesses.

Exercises

18.1-1
Why isn’t a minimum degree of t D 1 allowed?

18.1-2
For what values of t is the tree of Figure 18.1 a legal B-tree?

18.1-3
Show all legal B-trees of minimum degree 2 that store the keys 1; 2; 3; 4; 5.

18.1-4
As a function of the minimum degree t , what is the maximum number of keys that
can be stored in a B-tree of height h?

18.1-5
Describe the data structure that results if each black node in a red-black tree absorbs
its red children, incorporating their children with its own.

18.2 Basic operations on B-trees

This section presents the details of the operations B-TREE-SEARCH, B-TREE-
CREATE, and B-TREE-I NSERT. These procedures observe two conventions:

 The root of the B-tree is always in main memory, so that no procedure ever
needs to perform a DISK-READ on the root. If any changes to the root node
occur, however, then DISK-WRITE must be called on the root.

 Any nodes that are passed as parameters must already have had a D ISK-READ

operation performed on them.

The procedures are all <one-pass= algorithms that proceed downward from the root
of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except that instead
of making a binary, or <two-way,= branching decision at each node, the search

18.2 Basic operations on B-trees 505

makes a multiway branching decision according to the number of the node’s chil-
dren. More precisely, at each internal node x , the search makes an .x:n C 1/-way
branching decision.
The procedure B-TREE-SEARCH generalizes the TREE-SEARCH procedure de-

ûned for binary search trees on page 316. It takes as input a pointer to the root
node x of a subtree and a key k to be searched for in that subtree. The top-level
call is thus of the form B-TREE-SEARCH .T: root ; k/. If k is in the B-tree, then
B-TREE-SEARCH returns the ordered pair .y; i/ consisting of a node y and an
index i such that y: key i D k. Otherwise, the procedure returns NIL.

B-TREE-SEARCH .x; k/

1 i D 1
2 while i හ x:n and k > x: key i
3 i D i C 1
4 if i හ x:n and k == x: key i
5 return .x; i/
6 elseif x: leaf
7 return NIL

8 else DISK-READ .x:c i /
9 return B-TREE-SEARCH .x:c i ; k/

Using a linear-search procedure, lines 133 of B-TREE-SEARCH ûnd the smallest
index i such that k හ x: key i , or else they set i to x:n C 1. Lines 435 check to
see whether the search has discovered the key, returning if it has. Otherwise, if x
is a leaf, then line 7 terminates the search unsuccessfully, and if x is an internal
node, lines 839 recurse to search the appropriate subtree of x , after performing
the necessary DISK-READ on that child. Figure 18.1 illustrates the operation of
B-TREE-SEARCH. The blue nodes are those examined during a search for the
key R.

As in the TREE-SEARCH procedure for binary search trees, the nodes encoun-
tered during the recursion form a simple path downward from the root of the
tree. The B-TREE-SEARCH procedure therefore accesses O.h/ D O.log t n/ disk
blocks, where h is the height of the B-tree and n is the number of keys in the B-tree.
Since x:n < 2t , the while loop of lines 233 takes O.t/ time within each node, and
the total CPU time is O.th/ D O.t log t n/.

Creating an empty B-tree

To build a B-tree T , ûrst use the B-TREE-CREATE procedure on the next page
to create an empty root node and then call the B-TREE-I NSERT procedure on

506 Chapter 18 B-Trees

page 508 to add new keys. Both of these procedures use an auxiliary procedure
ALLOCATE-NODE, whose pseudocode we omit and which allocates one disk block
to be used as a new node in O.1/ time. A node created by ALLOCATE-NODE

requires no DISK-READ, since there is as yet no useful information stored on the
disk for that node. B-TREE-CREATE requires O.1/ disk operations and O.1/ CPU
time.

B-TREE-CREATE .T /

1 x D ALLOCATE-NODE ./
2 x: leaf D TRUE

3 x:n D 0
4 DISK-WRITE .x/
5 T: root D x

Inserting a key into a B-tree

Inserting a key into a B-tree is signiûcantly more complicated than inserting a
key into a binary search tree. As with binary search trees, you search for the leaf
position at which to insert the new key. With a B-tree, however, you cannot simply
create a new leaf node and insert it, as the resulting tree would fail to be a valid
B-tree. Instead, you insert the new key into an existing leaf node. Since you cannot
insert a key into a leaf node that is full, you need an operation that splits a full
node y (having 2t  1 keys) around its median key y: key t into two nodes having
only t  1 keys each. The median key moves up into y ’s parent to identify the
dividing point between the two new trees. But if y ’s parent is also full, you must
split it before you can insert the new key, and thus you could end up splitting full
nodes all the way up the tree.

To avoid having to go back up the tree, just split every full node you encounter
as you go down the tree. In this way, whenever you need to split a full node, you
are assured that its parent is not full. Inserting a key into a B-tree then requires
only a single pass down the tree from the root to a leaf.

Splitting a node in a B-tree
The procedure B-TREE-SPLIT-CHILD on the facing page takes as input a nonfull
internal node x (assumed to reside in main memory) and an index i such that x:c i
(also assumed to reside in main memory) is a full child of x . The procedure splits
this child in two and adjusts x so that it has an additional child. To split a full root,
you ûrst need to make the root a child of a new empty root node, so that you can

18.2 Basic operations on B-trees 507

use B-TREE-SPLIT-CHILD. The tree thus grows in height by 1: splitting is the
only means by which the tree grows taller.

B-TREE-SPLIT-CHILD .x; i/

1 y D x:c i // full node to split
2 ´ D ALLOCATE-NODE ./ // ´ will take half of y
3 ´: leaf D y: leaf
4 ´: n D t  1
5 for j D 1 to t  1 // ´ gets y ’s greatest keys . . .
6 ´: key j D y: key j Ct

7 if not y: leaf
8 for j D 1 to t // . . . and its corresponding children
9 ´:c j D y:c j Ct

10 y: n D t  1 // y keeps t  1 keys
11 for j D x:n C 1 downto i C 1 // shift x ’s children to the right . . .
12 x:c j C1 D x:c j

13 x:c i C1 D ´ // . . . to make room for ´ as a child
14 for j D x:n downto i // shift the corresponding keys in x
15 x: key j C1 D x: key j

16 x: key i D y: key t // insert y ’s median key
17 x:n D x:n C 1 // x has gained a child
18 DISK-WRITE .y/
19 DISK-WRITE .´/
20 DISK-WRITE .x/

Figure 18.5 illustrates how a node splits. B-TREE-SPLIT-CHILD splits the full
node y D x:c i about its median key (S in the ûgure), which moves up into y ’s
parent node x . Those keys in y that are greater than the median key move into a
new node ´, which becomes a new child of x .
B-TREE-SPLIT-CHILD works by straightforward cutting and pasting. Node x

is the parent of the node y being split, which is x ’s i th child (set in line 1). Node y
originally has 2t children and 2t  1 keys, but splitting reduces y to t children and
t  1 keys. The t largest children and t  1 keys of node y move over to node ´,
which becomes a new child of x , positioned just after y in x ’s table of children.
The median key of y moves up to become the key in node x that separates the
pointers to nodes y and ´.

Lines 2–9 create node ´ and give it the largest t  1 keys and, if y and ´ are
internal nodes, the corresponding t children of y . Line 10 adjusts the key count
for y . Then, lines 11317 shift keys and child pointers in x to the right in order to
make room for x ’s new child, insert ´ as a new child of x , move the median key

508 Chapter 18 B-Trees

N W … … N W S … …

R S T Q P U V R Q P T U V

x x

T 1 T 1 T 2 T 2 T 3 T 3 T 4 T 4 T 5 T 5 T 6 T 6 T 7 T 7 T 8 T 8

y D x:c i y D x:c i ´ D x:c i C1

x:
 ke
y i 

1

x:
 ke
y i 

1

x:
 ke
y i

x:
 ke
y i

x:
 ke
y i C

1

Figure 18.5 Splitting a node with t D 4. Node y D x:c i splits into two nodes, y and ´, and the
median key S of y moves up into y’s parent.

from y up to x in order to separate y from ´, and adjust x ’s key count. Lines 18320
write out all modiûed disk blocks. The CPU time used by B-TREE-SPLIT-CHILD

is ‚.t/, due to the for loops in lines 536 and 839. (The for loops in lines 11312 and
14315 also run for O.t/ iterations.) The procedure performs O.1/ disk operations.

Inserting a key into a B-tree in a single pass down the tree
Inserting a key k into a B-tree T of height h requires just a single pass down the
tree and O.h/ disk accesses. The CPU time required is O.th/ D O.t log t n/.
The B-TREE-I NSERT procedure uses B-TREE-SPLIT-CHILD to guarantee that the
recursion never descends to a full node. If the root is full, B-TREE-I NSERT splits
it by calling the procedure B-TREE-SPLIT-ROOT on the facing page.

B-TREE-I NSERT .T; k/

1 r D T: root
2 if r: n == 2t  1
3 s D B-TREE-SPLIT-ROOT .T /
4 B-TREE-I NSERT-NONFULL .s; k/
5 else B-TREE-I NSERT-NONFULL .r; k/

B-TREE-I NSERT works as follows. If the root is full, then line 3 calls B-TREE-
SPLIT-ROOT in line 3 to split it. A new node s (with two children) becomes the
root and is returned by B-TREE-SPLIT-ROOT. Splitting the root, illustrated in
Figure 18.6, is the only way to increase the height of a B-tree. Unlike a binary
search tree, a B-tree increases in height at the top instead of at the bottom. Re-
gardless of whether the root split, B-TREE-I NSERT ûnishes by calling B-TREE-
I NSERT-NONFULL to insert key k into the tree rooted at the nonfull root node,

18.2 Basic operations on B-trees 509

T 8 T 7 T 6 T 5 T 4 T 3 T 2 T 1

F H L D A N P

s

H

r

T 8 T 7 T 6 T 5 T 4 T 3 T 2 T 1

F D A L N P

r

T: root

T: root

Figure 18.6 Splitting the root with t D 4. Root node r splits in two, and a new root node s is
created. The new root contains the median key of r and has the two halves of r as children. The
B-tree grows in height by one when the root is split. A B-tree’ s height increases only when the root
splits.

which is either the new root (the call in line 4) or the original root (the call in
line 5).

B-TREE-SPLIT-ROOT .T /

1 s D ALLOCATE-NODE ./
2 s: leaf D FALSE

3 s: n D 0
4 s:c 1 D T: root
5 T: root D s
6 B-TREE-SPLIT-CHILD .s; 1/
7 return s

The auxiliary procedure B-TREE-I NSERT-NONFULL on page 511 inserts key k
into node x , which is assumed to be nonfull when the procedure is called. B-TREE-
I NSERT-NONFULL recurses as necessary down the tree, at all times guaranteeing
that the node to which it recurses is not full by calling B-TREE-SPLIT-CHILD

as necessary. The operation of B-TREE-I NSERT and the recursive operation of
B-TREE-I NSERT-NONFULL guarantee that this assumption is true.
Figure 18.7 illustrates the various cases of how B-TREE-I NSERT-NONFULL in-

serts a key into a B-tree. Lines 338 handle the case in which x is a leaf node by
inserting key k into x , shifting to the right all keys in x that are greater than k. If
x is not a leaf node, then k should go into the appropriate leaf node in the subtree
rooted at internal node x . Lines 9311 determine the child x:c i to which the recur-
sion descends. Line 13 detects whether the recursion would descend to a full child,
in which case line 14 calls B-TREE-SPLIT-CHILD to split that child into two non-

510 Chapter 18 B-Trees

P X M G (a)

P X M G (b)

P X M G (c) T

(d) P

(e) P

Q inserted

L inserted

F inserted

initial tree

B inserted

J K N O R S T D E C A U V Y Z

J K N O R S T D E B A U V Y Z C

J K N O D E B A U V Y Z C R S Q

M G X T

J K N O D E B A U V Y Z C R S Q L

M G C X T

J K N O D E B A U V Y Z R S Q L F

Figure 18.7 Inserting keys into a B-tree. The minimum degree t for this B-tree is 3, so that a node
can hold at most 5 keys. Blue nodes are modiûed by the insertion process. (a) The initial tree for this
example. (b) The result of inserting B into the initial tree. This case is a simple insertion into a leaf
node. (c) The result of inserting Q into the previous tree. The node RST UV splits into two nodes
containing RS and UV , the key T moves up to the root, and Q is inserted in the leftmost of the two
halves (the RS node). (d) The result of inserting L into the previous tree. The root splits right away,
since it is full, and the B-tree grows in height by one. Then L is inserted into the leaf containing JK.
(e) The result of inserting F into the previous tree. The node ABCDE splits before F is inserted
into the rightmost of the two halves (the DE node).

18.2 Basic operations on B-trees 511

B-TREE-I NSERT-NONFULL .x; k/

1 i D x:n
2 if x: leaf // inserting into a leaf?
3 while i  1 and k < x: key i // shift keys in x to make room for k
4 x: key i C1 D x: key i
5 i D i  1
6 x: key i C1 D k // insert key k in x
7 x:n D x:n C 1 // now x has 1 more key
8 DISK-WRITE .x/
9 else while i  1 and k < x: key i // ûnd the child where k belongs
10 i D i  1
11 i D i C 1
12 DISK-READ .x:c i /
13 if x:c i :n == 2t  1 // split the child if it’s full
14 B-TREE-SPLIT-CHILD .x; i/
15 if k > x: key i // does k go into x:c i or x:c i C1 ?
16 i D i C 1
17 B-TREE-I NSERT-NONFULL .x:c i ; k/

full children, and lines 15316 determine which of the two children is the correct
one to descend to. (Note that DISK-READ.x:c i / is not needed after line 16 incre-
ments i , since the recursion descends in this case to a child that was just created by
B-TREE-SPLIT-CHILD.) The net effect of lines 13316 is thus to guarantee that the
procedure never recurses to a full node. Line 17 then recurses to insert k into the
appropriate subtree.
For a B-tree of height h, B-TREE-I NSERT performs O.h/ disk accesses, since

only O.1/ DISK-READ and DISK-WRITE operations occur at each level of the
tree. The total CPU time used is O.t/ in each level of the tree, or O.th/ D
O.t log t n/ overall. Since B-TREE-I NSERT-NONFULL is tail-recursive, you can
instead implement it with a while loop, thereby demonstrating that the number of
blocks that need to be in main memory at any time is O.1/.

Exercises

18.2-1
Show the results of inserting the keys

F;S;Q;K;C;L;H; T; V;W;M;R;N;P;A;B;X; Y;D;Z;E

512 Chapter 18 B-Trees

in order into an empty B-tree with minimum degree 2. Draw only the conûgura-
tions of the tree just before some node must split, and also draw the ûnal conûgu-
ration.

18.2-2
Explain under what circumstances, if any, redundant D ISK-READ or DISK-WRITE

operations occur during the course of executing a call to B-TREE-I NSERT. (A
redundant DISK-READ is a DISK-READ for a block that is already in memory.
A redundant DISK-WRITE writes to disk a block of information that is identical to
what is already stored there.)

18.2-3
Professor Bunyan asserts that the B-TREE-I NSERT procedure always results in a
B-tree with the minimum possible height. Show that the professor is mistaken by
proving that with t D 2 and the set of keys f1; 2; : : : ; 15g, there is no insertion
sequence that results in a B-tree with the minimum possible height.

? 18.2-4
If you insert the keys f1; 2; : : : ; ng into an empty B-tree with minimum degree 2,
how many nodes does the ûnal B-tree have?

18.2-5
Since leaf nodes require no pointers to children, they could conceivably use a dif-
ferent (larger) t value than internal nodes for the same disk block size. Show how
to modify the procedures for creating and inserting into a B-tree to handle this
variation.

18.2-6
Suppose that you implement B-TREE-SEARCH to use binary search rather than
linear search within each node. Show that this change makes the required CPU
time O.lg n/, independent of how t might be chosen as a function of n.

18.2-7
Suppose that disk hardware allows you to choose the size of a disk block arbitrarily,
but that the time it takes to read the disk block is a Cbt , where a and b are speciûed
constants and t is the minimum degree for a B-tree using blocks of the selected size.
Describe how to choose t so as to minimize (approximately) the B-tree search time.
Suggest an optimal value of t for the case in which a D 5 milliseconds and b D 10
microseconds.

