
8 Sorting in Linear Time

We have now seen a handful of algorithms that can sort n numbers in O.n lg n/
time. Whereas merge sort and heapsort achieve this upper bound in the worst case,
quicksort achieves it on average. Moreover, for each of these algorithms, we can
produce a sequence of n input numbers that causes the algorithm to run in �.n lg n/
time.

These algorithms share an interesting property: the sorted order they determine
is based only on comparisons between the input elements. We call such sorting
algorithms comparison sorts. All the sorting algorithms introduced thus far are
comparison sorts.
In Section 8.1, we’ll prove that any comparison sort must make �.n lg n/ com-

parisons in the worst case to sort n elements. Thus, merge sort and heapsort are
asymptotically optimal, and no comparison sort exists that is faster by more than a
constant factor.
Sections 8.2, 8.3, and 8.4 examine three sorting algorithms4counting sort, radix

sort, and bucket sort4that run in linear time on certain types of inputs. Of course,
these algorithms use operations other than comparisons to determine the sorted
order. Consequently, the �.n lg n/ lower bound does not apply to them.

8.1 Lower bounds for sorting

A comparison sort uses only comparisons between elements to gain order infor-
mation about an input sequence ha 1 ; a 2 ; : : : ; a n i. That is, given two elements a i
and a j , it performs one of the tests a i < a j , a i හ a j , a i D a j , a i  a j , or a i > a j

to determine their relative order. It may not inspect the values of the elements or
gain order information about them in any other way.

Since we are proving a lower bound, we assume without loss of generality in
this section that all the input elements are distinct. After all, a lower bound for
distinct elements applies when elements may or may not be distinct. Consequently,

206 Chapter 8 Sorting in Linear Time

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node
(shown in blue) annotated by i :j indicates a comparison between a i and a j . A leaf annotated by the
permutation h�.1/; �.2/; : : : ; �.n/ i indicates the ordering a .1/ හ a .2/ හ    හ a .n/ . The high-
lighted path indicates the decisions made when sorting the input sequence ha 1 D 6;a 2 D 8;a 3 D 5i.
Going left from the root node, labeled 1:2, indicates that a 1 හ a 2 . Going right from the node labeled
2:3 indicates that a 2 > a 3 . Going right from the node labeled 1:3 indicates that a 1 > a 3 . Therefore,
we have the ordering a 3 හ a 1 හ a 2 , as indicated in the leaf labeled h3; 1; 2i. Because the three input
elements have 3Š D 6 possible permutations, the decision tree must have at least 6 leaves.

comparisons of the form a i D a j are useless, which means that we can assume
that no comparisons for exact equality occur. Moreover, the comparisons a i හ a j ,
a i  a j , a i > a j , and a i < a j are all equivalent in that they yield identical
information about the relative order of a i and a j . We therefore assume that all
comparisons have the form a i හ a j .

The decision-tree model

We can view comparison sorts abstractly in terms of decision trees. A decision
tree is a full binary tree (each node is either a leaf or has both children) that repre-
sents the comparisons between elements that are performed by a particular sorting
algorithm operating on an input of a given size. Control, data movement, and all
other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree cor-
responding to the insertion sort algorithm from Section 2.1 operating on an input
sequence of three elements.

A decision tree has each internal node annotated by i :j for some i and j in the
range 1 හ i; j හ n, where n is the number of elements in the input sequence.
We also annotate each leaf by a permutation h�.1/; �.2/; : : : ; �.n/ i. (See Sec-
tion C.1 for background on permutations.) Indices in the internal nodes and the
leaves always refer to the original positions of the array elements at the start of the
sorting algorithm. The execution of the comparison sorting algorithm corresponds
to tracing a simple path from the root of the decision tree down to a leaf. Each
internal node indicates a comparison a i හ a j . The left subtree then dictates sub-

8.1 Lower bounds for sorting 207

sequent comparisons once we know that a i හ a j , and the right subtree dictates
subsequent comparisons when a i > a j . Arriving at a leaf, the sorting algorithm
has established the ordering a .1/ හ a .2/ හ    හ a.n/ . Because any correct sort-
ing algorithm must be able to produce each permutation of its input, each of the nŠ
permutations on n elements must appear as at least one of the leaves of the decision
tree for a comparison sort to be correct. Furthermore, each of these leaves must be
reachable from the root by a downward path corresponding to an actual execution
of the comparison sort. (We call such leaves <reachable.=) Thus, we consider only
decision trees in which each permutation appears as a reachable leaf.

A lower bound for the worst case

The length of the longest simple path from the root of a decision tree to any of
its reachable leaves represents the worst-case number of comparisons that the cor-
responding sorting algorithm performs. Consequently, the worst-case number of
comparisons for a given comparison sort algorithm equals the height of its decision
tree. A lower bound on the heights of all decision trees in which each permutation
appears as a reachable leaf is therefore a lower bound on the running time of any
comparison sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1
Any comparison sort algorithm requires �.n lg n/ comparisons in the worst case.

Proof From the preceding discussion, it sufûces to determine the height of a
decision tree in which each permutation appears as a reachable leaf. Consider
a decision tree of height h with l reachable leaves corresponding to a comparison
sort on n elements. Because each of the nŠ permutations of the input appears as
one or more leaves, we have nŠ හ l . Since a binary tree of height h has no more
than 2 h leaves, we have

nŠ හ l හ 2 h ;

which, by taking logarithms, implies

h  lg.nŠ/ (since the lg function is monotonically increasing)

D �.n lg n/ (by equation (3.28) on page 67) .

Corollary 8.2
Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The O.n lg n/ upper bounds on the running times for heapsort and merge
sort match the �.n lg n/ worst-case lower bound from Theorem 8.1.

208 Chapter 8 Sorting in Linear Time

Exercises

8.1-1
What is the smallest possible depth of a leaf in a decision tree for a comparison
sort?

8.1-2
Obtain asymptotically tight bounds on lg.nŠ/ without using Stirling’s approxi-
mation. Instead, evaluate the summation

P n
kD1 lg k using techniques from Sec-

tion A.2.

8.1-3
Show that there is no comparison sort whose running time is linear for at least half
of the nŠ inputs of length n. What about a fraction of 1=n of the inputs of length n?
What about a fraction 1=2 n ?

8.1-4
You are given an n-element input sequence, and you know in advance that it is
partly sorted in the following sense. Each element initially in position i such that
i mod 4 D 0 is either already in its correct position, or it is one place away from
its correct position. For example, you know that after sorting, the element initially
in position 12 belongs in position 11, 12, or 13. You have no advance information
about the other elements, in positions i where i mod 4 ¤ 0. Show that an �.n lg n/
lower bound on comparison-based sorting still holds in this case.

8.2 Counting sort

Counting sort assumes that each of the n input elements is an integer in the range
0 to k, for some integer k. It runs in ‚.n C k/ time, so that when k D O.n/,
counting sort runs in ‚.n/ time.
Counting sort ûrst determines, for each input element x , the number of elements

less than or equal to x . It then uses this information to place element x directly into
its position in the output array. For example, if 17 elements are less than or equal
to x , then x belongs in output position 17. We must modify this scheme slightly
to handle the situation in which several elements have the same value, since we do
not want them all to end up in the same position.

The COUNTING-SORT procedure on the facing page takes as input an array
AŒ1 W n�, the size n of this array, and the limit k on the nonnegative integer values
in A. It returns its sorted output in the array BŒ1 W n� and uses an array CŒ0 W k� for
temporary working storage.

8.2 Counting sort 209

COUNTING-SORT.A; n; k/

1 let BŒ1 W n� and CŒ0 W k� be new arrays
2 for i D 0 to k
3 CŒi� D 0
4 for j D 1 to n
5 CŒAŒj �� D CŒAŒj �� C 1
6 // C Œi� now contains the number of elements equal to i .
7 for i D 1 to k
8 CŒi� D C Œi� C CŒi  1�
9 // C Œi� now contains the number of elements less than or equal to i .
10 // Copy A to B , starting from the end of A.
11 for j D n downto 1
12 BŒC ŒAŒj ��� D AŒj �
13 CŒAŒj �� D CŒAŒj ��  1 // to handle duplicate values
14 return B

Figure 8.2 illustrates counting sort. After the for loop of lines 233 initializes the
array C to all zeros, the for loop of lines 435 makes a pass over the array A to
inspect each input element. Each time it ûnds an input element whose value is i , it
increments CŒi�. Thus, after line 5, CŒi� holds the number of input elements equal
to i for each integer i D 0; 1; : : : ; k. Lines 738 determine for each i D 0; 1; : : : ; k
how many input elements are less than or equal to i by keeping a running sum of
the array C .

Finally, the for loop of lines 11313 makes another pass over A, but in reverse,
to place each element AŒj � into its correct sorted position in the output array B .
If all n elements are distinct, then when line 11 is ûrst entered, for each AŒj �, the
value CŒAŒj �� is the correct ûnal position of AŒj � in the output array, since there
are CŒAŒj �� elements less than or equal to AŒj �. Because the elements might not
be distinct, the loop decrements CŒAŒj �� each time it places a value AŒj � into B .
Decrementing CŒAŒj �� causes the previous element in A with a value equal to AŒj �,
if one exists, to go to the position immediately before AŒj � in the output array B .
How much time does counting sort require? The for loop of lines 233 takes ‚.k/

time, the for loop of lines 435 takes ‚.n/ time, the for loop of lines 738 takes ‚.k/
time, and the for loop of lines 11313 takes ‚.n/ time. Thus, the overall time is
‚.k C n/. In practice, we usually use counting sort when we have k D O.n/, in
which case the running time is ‚.n/.

Counting sort can beat the lower bound of �.n lg n/ proved in Section 8.1 be-
cause it is not a comparison sort. In fact, no comparisons between input elements
occur anywhere in the code. Instead, counting sort uses the actual values of the

210 Chapter 8 Sorting in Linear Time

2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

2 0 2 3 0 1

1 2 3 4 5

A

C

(a)

2 2 4 7 7 8 C

(b)

3

1 2 3 4 5 6 7 8

2 2 4 6 7 8

B

C

(c)

3

1 2 3 4 5 6 7 8

1 2 4 6 7 8

B

C

(d)

0 3

1 2 3 4 5 6 7 8

1 2 4 5 7 8

B

C

(e)

0 3

3

1 2 3 4 5 6 7 8

B

(f)

0 3 0 2 2 3 5

0

1 2 3 4 5 0

1 2 3 4 5 0 1 2 3 4 5 0

1 2 3 4 5 0

Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 W 8�, where each element of A
is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after line 5.
(b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one, two, and
three iterations of the loop in lines 11313, respectively. Only the tan elements of array B have been
ûlled in. (f) The ûnal sorted output array B.

elements to index into an array. The �.n lg n/ lower bound for sorting does not
apply when we depart from the comparison sort model.

An important property of counting sort is that it is stable: elements with the same
value appear in the output array in the same order as they do in the input array. That
is, it breaks ties between two elements by the rule that whichever element appears
ûrst in the input array appears ûrst in the output array. Normally, the property of
stability is important only when satellite data are carried around with the element
being sorted. Counting sort’s stability is important for another reason: counting
sort is often used as a subroutine in radix sort. As we shall see in the next section,
in order for radix sort to work correctly, counting sort must be stable.

Exercises

8.2-1
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the
array A D h6; 0; 2; 0; 1; 3; 4; 6; 1; 3; 2i.

8.2-2
Prove that COUNTING-SORT is stable.

8.3 Radix sort 211

8.2-3
Suppose that we were to rewrite the for loop header in line 11 of the COUNTING-
SORT as

11 for j D 1 to n

Show that the algorithm still works properly, but that it is not stable. Then rewrite
the pseudocode for counting sort so that elements with the same value are written
into the output array in order of increasing index and the algorithm is stable.

8.2-4
Prove the following loop invariant for COUNTING-SORT:

At the start of each iteration of the for loop of lines 11313, the last element
in A with value i that has not yet been copied into B belongs in BŒC Œi ��.

8.2-5
Suppose that the array being sorted contains only integers in the range 0 to k and
that there are no satellite data to move with those keys. Modify counting sort to
use just the arrays A and C , putting the sorted result back into array A instead of
into a new array B .

8.2-6
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its
input and then answers any query about how many of the n integers fall into a
range Œa W b� in O.1/ time. Your algorithm should use ‚.n C k/ preprocessing
time.

8.2-7
Counting sort can also work efûciently if the input values have fractional parts, but
the number of digits in the fractional part is small. Suppose that you are given n
numbers in the range 0 to k, each with at most d decimal (base 10) digits to the
right of the decimal point. Modify counting sort to run in ‚.n C 10 d k/ time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now ûnd only in
computer museums. The cards have 80 columns, and in each column a machine can
punch a hole in one of 12 places. The sorter can be mechanically <programmed=
to examine a given column of each card in a deck and distribute the card into one

212 Chapter 8 Sorting in Linear Time

329
457
657
839
436
720
355

329

457
657

839

436

720
355 329

457
657

839
436

720

355

329

457
657

839

436

720

355

Figure 8.3 The operation of radix sort on seven 3-digit numbers. The leftmost column is the input.
The remaining columns show the numbers after successive sorts on increasingly signiûcant digit
positions. Tan shading indicates the digit position sorted on to produce each list from the previous
one.

of 12 bins depending on which place has been punched. An operator can then
gather the cards bin by bin, so that cards with the ûrst place punched are on top of
cards with the second place punched, and so on.
For decimal digits, each column uses only 10 places. (The other two places are

reserved for encoding nonnumeric characters.) A d -digit number occupies a ûeld
of d columns. Since the card sorter can look at only one column at a time, the
problem of sorting n cards on a d -digit number requires a sorting algorithm.

Intuitively, you might sort numbers on their most significant (leftmost) digit,
sort each of the resulting bins recursively, and then combine the decks in order.
Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of
the bins, this procedure generates many intermediate piles of cards that you would
have to keep track of. (See Exercise 8.3-6.)
Radix sort solves the problem of card sorting4counterintuitively4by sorting on

the least significant digit ûrst. The algorithm then combines the cards into a single
deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the
cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least
signiûcant digit and recombines the deck in a like manner. The process continues
until the cards have been sorted on all d digits. Remarkably, at that point the cards
are fully sorted on the d -digit number. Thus, only d passes through the deck are
required to sort. Figure 8.3 shows how radix sort operates on a <deck= of seven
3-digit numbers.

In order for radix sort to work correctly, the digit sorts must be stable. The sort
performed by a card sorter is stable, but the operator must be careful not to change
the order of the cards as they come out of a bin, even though all the cards in a bin
have the same digit in the chosen column.
In a typical computer, which is a sequential random-access machine, we some-

times use radix sort to sort records of information that are keyed by multiple ûelds.
For example, we might wish to sort dates by three keys: year, month, and day. We
could run a sorting algorithm with a comparison function that, given two dates,

8.3 Radix sort 213

compares years, and if there is a tie, compares months, and if another tie occurs,
compares days. Alternatively, we could sort the information three times with a
stable sort: ûrst on day (the <least signiûcant= part), next on month, and ûnally on
year.

The code for radix sort is straightforward. The RADIX-SORT procedure assumes
that each element in array AŒ1 W n� has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RADIX-SORT.A; n; d/

1 for i D 1 to d
2 use a stable sort to sort array AŒ1 W n� on digit i

Although the pseudocode for RADIX-SORT does not specify which stable sort to
use, COUNTING-SORT is commonly used. If you use COUNTING-SORT as the sta-
ble sort, you can make RADIX-SORT a little more efûcient by revising COUNTING-
SORT to take a pointer to the output array as a parameter, having RADIX-SORT

preallocate this array, and alternating input and output between the two arrays in
successive iterations of the for loop in RADIX-SORT.

Lemma 8.3
Given n d -digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in ‚.d.n C k// time if the stable sort
it uses takes ‚.n C k/ time.

Proof The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable
sort used as the intermediate sorting algorithm. When each digit lies in the range 0
to k  1 (so that it can take on k possible values), and k is not too large, counting
sort is the obvious choice. Each pass over n d -digit numbers then takes ‚.n C k/
time. There are d passes, and so the total time for radix sort is ‚.d.n C k//.

When d is constant and k D O.n/, we can make radix sort run in linear time.
More generally, we have some üexibility in how to break each key into digits.

Lemma 8.4
Given n b-bit numbers and any positive integer r හ b, RADIX-SORT correctly sorts
these numbers in ‚..b=r/.n C 2 r // time if the stable sort it uses takes ‚.n C k/
time for inputs in the range 0 to k.

214 Chapter 8 Sorting in Linear Time

Proof For a value r හ b, view each key as having d D db=r e digits of r bits
each. Each digit is an integer in the range 0 to 2 r  1, so that we can use counting
sort with k D 2 r  1. (For example, we can view a 32-bit word as having four 8-bit
digits, so that b D 32, r D 8, k D 2 r  1 D 255, and d D b=r D 4.) Each pass of
counting sort takes ‚.n C k/ D ‚.n C 2 r / time and there are d passes, for a total
running time of ‚.d.n C 2 r // D ‚..b=r/.n C 2 r //.

Given n and b, what value of r හ b minimizes the expression .b=r/.n C 2 r /?
As r decreases, the factor b=r increases, but as r increases so does 2 r . The answer
depends on whether b < blg nc. If b < blg nc, then r හ b implies .nC2 r / D ‚.n/.
Thus, choosing r D b yields a running time of .b=b/.n C 2 b / D ‚.n/, which is
asymptotically optimal. If b  blg nc, then choosing r D blg nc gives the best
running time to within a constant factor, which we can see as follows. 1 Choosing
r D blg nc yields a running time of ‚.bn= lg n/. As r increases above blg nc, the
2 r term in the numerator increases faster than the r term in the denominator, and so
increasing r above blg nc yields a running time of �.bn= lg n/. If instead r were
to decrease below blg nc, then the b=r term increases and the n C 2 r term remains
at ‚.n/.
Is radix sort preferable to a comparison-based sorting algorithm, such as quick-

sort? If b D O.lg n/, as is often the case, and r  lg n, then radix sort’s running
time is ‚.n/, which appears to be better than quicksort’s expected running time
of ‚.n lg n/. The constant factors hidden in the ‚-notation differ, however. Al-
though radix sort may make fewer passes than quicksort over the n keys, each
pass of radix sort may take signiûcantly longer. Which sorting algorithm to prefer
depends on the characteristics of the implementations, of the underlying machine
(e.g., quicksort often uses hardware caches more effectively than radix sort), and
of the input data. Moreover, the version of radix sort that uses counting sort as the
intermediate stable sort does not sort in place, which many of the ‚.n lg n/-time
comparison sorts do. Thus, when primary memory storage is at a premium, an
in-place algorithm such as quicksort could be the better choice.

Exercises

8.3-1
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol-
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB,
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

1 The choice of r D blg nc assumes that n > 1. If n හ 1, there is nothing to sort.

8.4 Bucket sort 215

8.3-2
Which of the following sorting algorithms are stable: insertion sort, merge sort,
heapsort, and quicksort? Give a simple scheme that makes any comparison sort
stable. How much additional time and space does your scheme entail?

8.3-3
Use induction to prove that radix sort works. Where does your proof need the
assumption that the intermediate sort is stable?

8.3-4
Suppose that COUNTING-SORT is used as the stable sort within RADIX-SORT. If
RADIX-SORT calls COUNTING-SORT d times, then since each call of COUNTING-
SORT makes two passes over the data (lines 435 and 11313), altogether 2d passes
over the data occur. Describe how to reduce the total number of passes to d C 1.

8.3-5
Show how to sort n integers in the range 0 to n 3  1 in O.n/ time.

? 8.3-6
In the ûrst card-sorting algorithm in this section, which sorts on the most signiûcant
digit ûrst, exactly how many sorting passes are needed to sort d -digit decimal
numbers in the worst case? How many piles of cards does an operator need to keep
track of in the worst case?

8.4 Bucket sort

Bucket sort assumes that the input is drawn from a uniform distribution and has an
average-case running time of O.n/. Like counting sort, bucket sort is fast because
it assumes something about the input. Whereas counting sort assumes that the input
consists of integers in a small range, bucket sort assumes that the input is generated
by a random process that distributes elements uniformly and independently over
the interval Œ0; 1/. (See Section C.2 for a deûnition of a uniform distribution.)

Bucket sort divides the interval Œ0; 1/ into n equal-sized subintervals, or buckets,
and then distributes the n input numbers into the buckets. Since the inputs are uni-
formly and independently distributed over Œ0; 1/, we do not expect many numbers
to fall into each bucket. To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the elements in each.

The BUCKET-SORT procedure on the next page assumes that the input is an
array AŒ1 W n� and that each element AŒi� in the array satisûes 0 හ AŒi� < 1. The
code requires an auxiliary array BŒ0 W n  1� of linked lists (buckets) and assumes

216 Chapter 8 Sorting in Linear Time

1

2

3

4

5

6

7

8

9

10

.78

.17

.39

.72

.94

.21

.12

.23

.68

A

(a)

1

2

3

4

5

6

7

8

9

B

(b)

0

.12 .17

.21 .23

.26

.26

.39

.68

.72 .78

.94

Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 W 10�. (b) The
array BŒ0 W 9� of sorted lists (buckets) after line 7 of the algorithm, with slashes indicating the end of
each bucket. Bucket i holds values in the half-open interval Œi=10; .i C 1/=10/. The sorted output
consists of a concatenation of the lists BŒ0�; BŒ1�; : : : ; BŒ9� in order.

that there is a mechanism for maintaining such lists. (Section 10.2 describes how
to implement basic operations on linked lists.) Figure 8.4 shows the operation of
bucket sort on an input array of 10 numbers.

BUCKET-SORT.A; n/

1 let BŒ0 W n  1� be a new array
2 for i D 0 to n  1
3 make BŒi� an empty list
4 for i D 1 to n
5 insert AŒi� into list BŒbn  AŒi�c�
6 for i D 0 to n  1
7 sort list BŒi� with insertion sort
8 concatenate the lists BŒ0�;BŒ1�; : : : ; BŒn  1� together in order
9 return the concatenated lists

To see that this algorithm works, consider two elements AŒi� and AŒj �. Assume
without loss of generality that AŒi� හ AŒj �. Since bn  AŒi�c හ bn  AŒj �c, either
element AŒi� goes into the same bucket as AŒj � or it goes into a bucket with a lower
index. If AŒi� and AŒj � go into the same bucket, then the for loop of lines 637 puts
them into the proper order. If AŒi� and AŒj � go into different buckets, then line 8
puts them into the proper order. Therefore, bucket sort works correctly.

8.4 Bucket sort 217

To analyze the running time, observe that, together, all lines except line 7 take
O.n/ time in the worst case. We need to analyze the total time taken by the n calls
to insertion sort in line 7.

To analyze the cost of the calls to insertion sort, let n i be the random variable
denoting the number of elements placed in bucket BŒi�. Since insertion sort runs
in quadratic time (see Section 2.2), the running time of bucket sort is

T .n/ D ‚.n/ C
n1 X

i D0

O.n 2
i / : (8.1)

We now analyze the average-case running time of bucket sort, by computing the
expected value of the running time, where we take the expectation over the input
distribution. Taking expectations of both sides and using linearity of expectation
(equation (C.24) on page 1192), we have

E ŒT .n/� D E

"

‚.n/ C
n1 X

i D0

O.n 2
i /

D ‚.n/ C
n1 X

i D0

E
í
O.n 2

i /
î

(by linearity of expectation)

D ‚.n/ C
n1 X

i D0

O
ã
E
í
n 2
i

îä
(by equation (C.25) on page 1193) . (8.2)

We claim that

E
í
n 2
i

î
D 2  1=n (8.3)

for i D 0; 1; : : : ; n  1. It is no surprise that each bucket i has the same value
of E Œn 2

i �, since each value in the input array A is equally likely to fall in any
bucket.
To prove equation (8.3), view each random variable n i as the number of suc-

cesses in n Bernoulli trials (see Section C.4). Success in a trial occurs when
an element goes into bucket BŒi�, with a probability p D 1=n of success and
q D 1  1=n of failure. A binomial distribution counts n i , the number of suc-
cesses, in the n trials. By equations (C.41) and (C.44) on pages 119931200, we
have E Œn i � D np D n.1=n/ D 1 and Var Œn i � D npq D 1  1=n. Equation (C.31)
on page 1194 gives

E
í
n 2
i

î
D Var Œn i � C E 2 Œn i �

D .1  1=n/ C 1 2

D 2  1=n ;

218 Chapter 8 Sorting in Linear Time

which proves equation (8.3). Using this expected value in equation (8.2), we get
that the average-case running time for bucket sort is ‚.n/ Cn  O.2 1=n/ D ‚.n/.

Even if the input is not drawn from a uniform distribution, bucket sort may still
run in linear time. As long as the input has the property that the sum of the squares
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us
that bucket sort runs in linear time.

Exercises

8.4-1
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array
A D h:79; :13; :16; :64; :39; :20; :89; :53; :71; :42 i.

8.4-2
Explain why the worst-case running time for bucket sort is ‚.n 2 /. What simple
change to the algorithm preserves its linear average-case running time and makes
its worst-case running time O.n lg n/?

8.4-3
Let X be a random variable that is equal to the number of heads in two üips of a
fair coin. What is E ŒX 2 �? What is E 2 ŒX�?

8.4-4
An array A of size n > 10 is ûlled in the following way. For each element AŒi�,
choose two random variables x i and y i uniformly and independently from Œ0; 1/.
Then set

AŒi� D
b10x i c

10
C

y i
n

:

Modify bucket sort so that it sorts the array A in O.n/ expected time.

? 8.4-5
You are given n points in the unit disk, p i D .x i ; y i /, such that 0 < x 2

i C y 2
i හ 1

for i D 1; 2; : : : ; n. Suppose that the points are uniformly distributed, that is, the
probability of ûnding a point in any region of the disk is proportional to the area
of that region. Design an algorithm with an average-case running time of ‚.n/ to
sort the n points by their distances d i D

p
x 2
i C y 2

i from the origin. (Hint: Design
the bucket sizes in BUCKET-SORT to reüect the uniform distribution of the points
in the unit disk.)

? 8.4-6
A probability distribution function P.x/ for a random variable X is deûned
by P.x/ D Pr fX හ x g. Suppose that you draw a list of n random variables

Problems for Chapter 8 219

X 1 ; X 2 ; : : : ; X n from a continuous probability distribution function P that is com-
putable in O.1/ time (given y you can ûnd x such that P.x/ D y in O.1/ time).
Give an algorithm that sorts these numbers in linear average-case time.

Problems

8-1 Probabilistic lower bounds on comparison sorting
In this problem, you will prove a probabilistic �.n lg n/ lower bound on the run-
ning time of any deterministic or randomized comparison sort on n distinct input
elements. You’ll begin by examining a deterministic comparison sort A with deci-
sion tree T A . Assume that every permutation of A’s inputs is equally likely.

a. Suppose that each leaf of T A is labeled with the probability that it is reached
given a random input. Prove that exactly nŠ leaves are labeled 1=nŠ and that the
rest are labeled 0.

b. Let D.T / denote the external path length of a decision tree T 4the sum of the
depths of all the leaves of T . Let T be a decision tree with k > 1 leaves,
and let LT and RT be the left and right subtrees of T . Show that D.T / D
D.LT / C D.RT / C k.

c. Let d.k/ be the minimum value of D.T / over all decision trees T with k > 1
leaves. Show that d.k/ D min fd.i/ C d.k  i/ C k W 1 හ i හ k  1g. (Hint:
Consider a decision tree T with k leaves that achieves the minimum. Let i 0 be
the number of leaves in LT and k  i 0 the number of leaves in RT .)

d. Prove that for a given value of k > 1 and i in the range 1 හ i හ k  1, the
function i lg i C .k  i/ lg.k  i/ is minimized at i D k=2. Conclude that
d.k/ D �.k lg k/.

e. Prove that D.T A / D �.nŠ lg.nŠ//, and conclude that the average-case time to
sort n elements is �.n lg n/.

Now consider a randomized comparison sort B . We can extend the decision-tree
model to handle randomization by incorporating two kinds of nodes: ordinary com-
parison nodes and <randomization= nodes. A randomization node models a random
choice of the form RANDOM.1; r/ made by algorithm B . The node has r children,
each of which is equally likely to be chosen during an execution of the algorithm.

f. Show that for any randomized comparison sort B , there exists a deterministic
comparison sort A whose expected number of comparisons is no more than
those made by B .

220 Chapter 8 Sorting in Linear Time

8-2 Sorting in place in linear time
You have an array of n data records to sort, each with a key of 0 or 1. An algorithm
for sorting such a set of records might possess some subset of the following three
desirable characteristics:

1. The algorithm runs in O.n/ time.

2. The algorithm is stable.

3. The algorithm sorts in place, using no more than a constant amount of storage
space in addition to the original array.

a. Give an algorithm that satisûes criteria 1 and 2 above.

b. Give an algorithm that satisûes criteria 1 and 3 above.

c. Give an algorithm that satisûes criteria 2 and 3 above.

d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting
method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records
with b-bit keys in O.bn/ time? Explain how or why not.

e. Suppose that the n records have keys in the range from 1 to k. Show how to
modify counting sort so that it sorts the records in place in O.n C k/ time. You
may use O.k/ storage outside the input array. Is your algorithm stable?

8-3 Sorting variable-length items
a. You are given an array of integers, where different integers may have different

numbers of digits, but the total number of digits over all the integers in the array
is n. Show how to sort the array in O.n/ time.

b. You are given an array of strings, where different strings may have different
numbers of characters, but the total number of characters over all the strings
is n. Show how to sort the strings in O.n/ time. (The desired order is the
standard alphabetical order: for example, a < ab < b.)

8-4 Water jugs
You are given n red and n blue water jugs, all of different shapes and sizes. All the
red jugs hold different amounts of water, as do all the blue jugs, and you cannot
tell from the size of a jug how much water it holds. Moreover, for every jug of one
color, there is a jug of the other color that holds the same amount of water.

Your task is to group the jugs into pairs of red and blue jugs that hold the same
amount of water. To do so, you may perform the following operation: pick a pair

Problems for Chapter 8 221

of jugs in which one is red and one is blue, ûll the red jug with water, and then pour
the water into the blue jug. This operation tells you whether the red jug or the blue
jug can hold more water, or that they have the same volume. Assume that such
a comparison takes one time unit. Your goal is to ûnd an algorithm that makes a
minimum number of comparisons to determine the grouping. Remember that you
may not directly compare two red jugs or two blue jugs.

a. Describe a deterministic algorithm that uses ‚.n 2 / comparisons to group the
jugs into pairs.

b. Prove a lower bound of �.n lg n/ for the number of comparisons that an algo-
rithm solving this problem must make.

c. Give a randomized algorithm whose expected number of comparisons is
O.n lg n/, and prove that this bound is correct. What is the worst-case num-
ber of comparisons for your algorithm?

8-5 Average sorting
Suppose that, instead of sorting an array, we just require that the elements increase
on average. More precisely, we call an n-element array A k-sorted if, for all
i D 1; 2; : : : ; n  k, the following holds: P i Ck1

j Di AŒj �

k
හ

P i Ck
j Di C1 AŒj �

k
:

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1; 2; : : : ; 10 that is 2-sorted, but not sorted.

c. Prove that an n-element array is k-sorted if and only if AŒi� හ AŒi C k� for all
i D 1; 2; : : : ; n  k.

d. Give an algorithm that k-sorts an n-element array in O.n lg.n=k// time.

We can also show a lower bound on the time to produce a k-sorted array, when k
is a constant.

e. Show how to sort a k-sorted array of length n in O.n lg k/ time. (Hint: Use the
solution to Exercise 6.5-11.)

f. Show that when k is a constant, k-sorting an n-element array requires �.n lg n/
time. (Hint: Use the solution to part (e) along with the lower bound on compar-
ison sorts.)

222 Chapter 8 Sorting in Linear Time

8-6 Lower bound on merging sorted lists
The problem of merging two sorted lists arises frequently. We have seen a proce-
dure for it as the subroutine MERGE in Section 2.3.1. In this problem, you will
prove a lower bound of 2n  1 on the worst-case number of comparisons required
to merge two sorted lists, each containing n items. First, you will show a lower
bound of 2n  o.n/ comparisons by using a decision tree.

a. Given 2n numbers, compute the number of possible ways to divide them into
two sorted lists, each with n numbers.

b. Using a decision tree and your answer to part (a), show that any algorithm that
correctly merges two sorted lists must perform at least 2n  o.n/ comparisons.

Now you will show a slightly tighter 2n  1 bound.

c. Show that if two elements are consecutive in the sorted order and from different
lists, then they must be compared.

d. Use your answer to part (c) to show a lower bound of 2n  1 comparisons for
merging two sorted lists.

8-7 The 0-1 sorting lemma and columnsort
A compare-exchange operation on two array elements AŒi� and AŒj �, where i < j ,
has the form

COMPARE-EXCHANGE .A; i; j /

1 if AŒi� > AŒj �
2 exchange AŒi� with AŒj �

After the compare-exchange operation, we know that AŒi� හ AŒj �.
An oblivious compare-exchange algorithm operates solely by a sequence of

prespeciûed compare-exchange operations. The indices of the positions compared
in the sequence must be determined in advance, and although they can depend
on the number of elements being sorted, they cannot depend on the values being
sorted, nor can they depend on the result of any prior compare-exchange operation.
For example, the COMPARE-EXCHANGE-I NSERTION-SORT procedure on the fac-
ing page shows a variation of insertion sort as an oblivious compare-exchange algo-
rithm. (Unlike the I NSERTION-SORT procedure on page 19, the oblivious version
runs in ‚.n 2 / time in all cases.)

The 0-1 sorting lemma provides a powerful way to prove that an oblivious
compare-exchange algorithm produces a sorted result. It states that if an oblivi-
ous compare-exchange algorithm correctly sorts all input sequences consisting of
only 0s and 1s, then it correctly sorts all inputs containing arbitrary values.

Problems for Chapter 8 223

COMPARE-EXCHANGE-I NSERTION-SORT .A; n/

1 for i D 2 to n
2 for j D i  1 downto 1
3 COMPARE-EXCHANGE .A; j; j C 1/

You will prove the 0-1 sorting lemma by proving its contrapositive: if an oblivi-
ous compare-exchange algorithm fails to sort an input containing arbitrary values,
then it fails to sort some 0-1 input. Assume that an oblivious compare-exchange
algorithm X fails to correctly sort the array AŒ1 W n�. Let AŒp� be the smallest value
in A that algorithm X puts into the wrong location, and let AŒq� be the value that
algorithm X moves to the location into which AŒp� should have gone. Deûne an
array BŒ1 W n� of 0s and 1s as follows:

BŒi� D

(
0 if AŒi� හ AŒp� ;

1 if AŒi� > AŒp� :

a. Argue that AŒq� > AŒp�, so that BŒp� D 0 and BŒq� D 1.

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm X fails to
sort array B correctly.

Now you will use the 0-1 sorting lemma to prove that a particular sorting algo-
rithm works correctly. The algorithm, columnsort, works on a rectangular array
of n elements. The array has r rows and s columns (so that n D rs), subject to
three restrictions:

 r must be even,

 s must be a divisor of r , and

 r  2s 2 .

When columnsort completes, the array is sorted in column-major order: reading
down each column in turn, from left to right, the elements monotonically increase.

Columnsort operates in eight steps, regardless of the value of n. The odd steps
are all the same: sort each column individually. Each even step is a ûxed permuta-
tion. Here are the steps:

1. Sort each column.

2. Transpose the array, but reshape it back to r rows and s columns. In other
words, turn the leftmost column into the top r=s rows, in order; turn the next
column into the next r=s rows, in order; and so on.

224 Chapter 8 Sorting in Linear Time

10 14 5
8 7 17
12 1 6
16 9 11
4 15 2
18 3 13

(a)

4 1 2
8 3 5
10 7 6
12 9 11
16 14 13
18 15 17

(b)

4 8 10
12 16 18
1 3 7
9 14 15
2 5 6
11 13 17

(c)

1 3 6
2 5 7
4 8 10
9 13 15
11 14 17
12 16 18

(d)

1 4 11
3 8 14
6 10 17
2 9 12
5 13 16
7 15 18

(e)

1 4 11
2 8 12
3 9 14
5 10 16
6 13 17
7 15 18

(f)

5 10 16
6 13 17
7 15 18

1 4 11
2 8 12
3 9 14

(g)

4 10 16
5 11 17
6 12 18

1 7 13
2 8 14
3 9 15

(h)

1 7 13
2 8 14
3 9 15
4 10 16
5 11 17
6 12 18

(i)

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (This example
does not obey the r  2s 2 requirement, but it works.) (b) After sorting each column in step 1.
(c) After transposing and reshaping in step 2. (d) After sorting each column in step 3. (e) After
performing step 4, which inverts the permutation from step 2 . (f) After sorting each column in
step 5. (g) After shifting by half a column in step 6. (h) After sorting each column in step 7. (i) After
performing step 8, which inverts the permutation from step 6. Steps 638 sort the bottom half of each
column with the top half of the next column. After step 8, the array is sorted in column-major order.

3. Sort each column.

4. Perform the inverse of the permutation performed in step 2.

5. Sort each column.

6. Shift the top half of each column into the bottom half of the same column, and
shift the bottom half of each column into the top half of the next column to the
right. Leave the top half of the leftmost column empty. Shift the bottom half
of the last column into the top half of a new rightmost column, and leave the
bottom half of this new column empty.

7. Sort each column.

8. Perform the inverse of the permutation performed in step 6.

You can think of steps 638 as a single step that sorts the bottom half of each column
and the top half of the next column. Figure 8.5 shows an example of the steps
of columnsort with r D 6 and s D 3. (Even though this example violates the
requirement that r  2s 2 , it happens to work.)

c. Argue that we can treat columnsort as an oblivious compare-exchange algo-
rithm, even if we do not know what sorting method the odd steps use.

Notes for Chapter 8 225

Although it might seem hard to believe that columnsort actually sorts, you will
use the 0-1 sorting lemma to prove that it does. The 0-1 sorting lemma applies
because we can treat columnsort as an oblivious compare-exchange algorithm. A
couple of deûnitions will help you apply the 0-1 sorting lemma. We say that an
area of an array is clean if we know that it contains either all 0s or all 1s or if it is
empty. Otherwise, the area might contain mixed 0s and 1s, and it is dirty. From
here on, assume that the input array contains only 0s and 1s, and that we can treat
it as an array with r rows and s columns.

d. Prove that after steps 133, the array consists of clean rows of 0s at the top, clean
rows of 1s at the bottom, and at most s dirty rows between them. (One of the
clean rows could be empty.)

e. Prove that after step 4, the array, read in column-major order, starts with a clean
area of 0s, ends with a clean area of 1s, and has a dirty area of at most s 2

elements in the middle. (Again, one of the clean areas could be empty.)

f. Prove that steps 538 produce a fully sorted 0-1 output. Conclude that column-
sort correctly sorts all inputs containing arbitrary values.

g. Now suppose that s does not divide r . Prove that after steps 133, the array
consists of clean rows of 0s at the top, clean rows of 1s at the bottom, and at
most 2s  1 dirty rows between them. (Once again, one of the clean areas could
be empty.) How large must r be, compared with s , for columnsort to correctly
sort when s does not divide r ?

h. Suggest a simple change to step 1 that allows us to maintain the requirement
that r  2s 2 even when s does not divide r , and prove that with your change,
columnsort correctly sorts.

Chapter notes

The decision-tree model for studying comparison sorts was introduced by Ford
and Johnson [150]. Knuth’s comprehensive treatise on sorting [261] covers many
variations on the sorting problem, including the information-theoretic lower bound
on the complexity of sorting given here. Ben-Or [46] studied lower bounds for
sorting using generalizations of the decision-tree model.
Knuth credits H. H. Seward with inventing counting sort in 1954, as well as with

the idea of combining counting sort with radix sort. Radix sorting starting with the
least signiûcant digit appears to be a folk algorithm widely used by operators of

226 Chapter 8 Sorting in Linear Time

mechanical card-sorting machines. According to Knuth, the ûrst published refer-
ence to the method is a 1929 document by L. J. Comrie describing punched-card
equipment. Bucket sorting has been in use since 1956, when the basic idea was
proposed by Isaac and Singleton [235].
Munro and Raman [338] give a stable sorting algorithm that performs O.n 1C /

comparisons in the worst case, where 0 < � හ 1 is any ûxed constant. Although
any of the O.n lg n/-time algorithms make fewer comparisons, the algorithm by
Munro and Raman moves data only O.n/ times and operates in place.

The case of sorting n b-bit integers in o.n lg n/ time has been considered by
many researchers. Several positive results have been obtained, each under slightly
different assumptions about the model of computation and the restrictions placed
on the algorithm. All the results assume that the computer memory is divided into
addressable b-bit words. Fredman and Willard [157] introduced the fusion tree data
structure and used it to sort n integers in O.n lg n= lg lg n/ time. This bound was
later improved to O.n

p
lg n/ time by Andersson [17]. These algorithms require

the use of multiplication and several precomputed constants. Andersson, Hagerup,
Nilsson, and Raman [18] have shown how to sort n integers in O.n lg lg n/ time
without using multiplication, but their method requires storage that can be un-
bounded in terms of n. Using multiplicative hashing, we can reduce the storage
needed to O.n/, but then the O.n lg lg n/ worst-case bound on the running time
becomes an expected-time bound. Generalizing the exponential search trees of
Andersson [17], Thorup [434] gave an O.n.lg lg n/ 2 /-time sorting algorithm that
does not use multiplication or randomization, and it uses linear space. Combining
these techniques with some new ideas, Han [207] improved the bound for sorting
to O.n lg lg n lg lg lg n/ time. Although these algorithms are important theoretical
breakthroughs, they are all fairly complicated and at the present time seem unlikely
to compete with existing sorting algorithms in practice.
The columnsort algorithm in Problem 8-7 is by Leighton [286].

