
8 Sorting in Linear Time

We have now seen a handful of algorithms that can sort n numbers in O.n lg n/ 
time. Whereas merge sort and heapsort achieve this upper bound in the worst case, 
quicksort achieves it on average. Moreover, for each of these algorithms, we can 
produce a sequence of n input numbers that causes the algorithm to run in �.n lg n/ 
time. 

These algorithms share an interesting property: the sorted order they determine 
is based only on comparisons between the input elements. We call such sorting 
algorithms comparison sorts. All the sorting algorithms introduced thus far are 
comparison sorts. 
In Section 8.1, we’ll prove that any comparison sort must make �.n lg n/ com- 

parisons in the worst case to sort n elements. Thus, merge sort and heapsort are 
asymptotically optimal, and no comparison sort exists that is faster by more than a 
constant factor. 
Sections 8.2, 8.3, and 8.4 examine three sorting algorithms4counting sort, radix 

sort, and bucket sort4that run in linear time on certain types of inputs. Of course, 
these algorithms use operations other than comparisons to determine the sorted 
order. Consequently, the �.n lg n/ lower bound does not apply to them. 

8.1 Lower bounds for sorting 

A comparison sort uses only comparisons between elements to gain order infor- 
mation about an input sequence ha 1 ; a 2 ; : : : ; a n i. That is, given two elements a i 
and a j , it performs one of the tests a i < a j , a i හ a j , a i D a j , a i  a j , or a i > a j 

to determine their relative order. It may not inspect the values of the elements or 
gain order information about them in any other way. 

Since we are proving a lower bound, we assume without loss of generality in 
this section that all the input elements are distinct. After all, a lower bound for 
distinct elements applies when elements may or may not be distinct. Consequently, 



206 Chapter 8 Sorting in Linear Time 

≤ > 

≤ > 

1:2 

2:3 1:3 

〈1,2,3〉 1:3 〈2,1,3〉 2:3 

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉 

≤ > 

≤ > 

≤ > 

〈2,3,1〉 

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node 
(shown in blue) annotated by i :j indicates a comparison between a i and a j . A leaf annotated by the 
permutation h�.1/; �.2/; : : : ; �.n/ i indicates the ordering a .1/ හ a .2/ හ    හ a .n/ . The high- 
lighted path indicates the decisions made when sorting the input sequence ha 1 D 6;a 2 D 8;a 3 D 5i. 
Going left from the root node, labeled 1:2, indicates that a 1 හ a 2 . Going right from the node labeled 
2:3 indicates that a 2 > a 3 . Going right from the node labeled 1:3 indicates that a 1 > a 3 . Therefore, 
we have the ordering a 3 හ a 1 හ a 2 , as indicated in the leaf labeled h3; 1; 2i. Because the three input 
elements have 3Š D 6 possible permutations, the decision tree must have at least 6 leaves. 

comparisons of the form a i D a j are useless, which means that we can assume 
that no comparisons for exact equality occur. Moreover, the comparisons a i හ a j , 
a i  a j , a i > a j , and a i < a j are all equivalent in that they yield identical 
information about the relative order of a i and a j . We therefore assume that all 
comparisons have the form a i හ a j . 

The decision-tree model 

We can view comparison sorts abstractly in terms of decision trees. A decision 
tree is a full binary tree (each node is either a leaf or has both children) that repre- 
sents the comparisons between elements that are performed by a particular sorting 
algorithm operating on an input of a given size. Control, data movement, and all 
other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree cor- 
responding to the insertion sort algorithm from Section 2.1 operating on an input 
sequence of three elements. 

A decision tree has each internal node annotated by i :j for some i and j in the 
range 1 හ i; j හ n, where n is the number of elements in the input sequence. 
We also annotate each leaf by a permutation h�.1/; �.2/; : : : ; �.n/ i. (See Sec- 
tion C.1 for background on permutations.) Indices in the internal nodes and the 
leaves always refer to the original positions of the array elements at the start of the 
sorting algorithm. The execution of the comparison sorting algorithm corresponds 
to tracing a simple path from the root of the decision tree down to a leaf. Each 
internal node indicates a comparison a i හ a j . The left subtree then dictates sub- 
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sequent comparisons once we know that a i හ a j , and the right subtree dictates 
subsequent comparisons when a i > a j . Arriving at a leaf, the sorting algorithm 
has established the ordering a .1/ හ a .2/ හ    හ a.n/ . Because any correct sort- 
ing algorithm must be able to produce each permutation of its input, each of the nŠ 
permutations on n elements must appear as at least one of the leaves of the decision 
tree for a comparison sort to be correct. Furthermore, each of these leaves must be 
reachable from the root by a downward path corresponding to an actual execution 
of the comparison sort. (We call such leaves <reachable.=) Thus, we consider only 
decision trees in which each permutation appears as a reachable leaf. 

A lower bound for the worst case 

The length of the longest simple path from the root of a decision tree to any of 
its reachable leaves represents the worst-case number of comparisons that the cor- 
responding sorting algorithm performs. Consequently, the worst-case number of 
comparisons for a given comparison sort algorithm equals the height of its decision 
tree. A lower bound on the heights of all decision trees in which each permutation 
appears as a reachable leaf is therefore a lower bound on the running time of any 
comparison sort algorithm. The following theorem establishes such a lower bound. 

Theorem 8.1 
Any comparison sort algorithm requires �.n lg n/ comparisons in the worst case. 

Proof From the preceding discussion, it sufûces to determine the height of a 
decision tree in which each permutation appears as a reachable leaf. Consider 
a decision tree of height h with l reachable leaves corresponding to a comparison 
sort on n elements. Because each of the nŠ permutations of the input appears as 
one or more leaves, we have nŠ හ l . Since a binary tree of height h has no more 
than 2 h leaves, we have 

nŠ හ l හ 2 h ; 

which, by taking logarithms, implies 

h  lg.nŠ/ (since the lg function is monotonically increasing) 

D �.n lg n/ (by equation (3.28) on page 67) . 

Corollary 8.2 
Heapsort and merge sort are asymptotically optimal comparison sorts. 

Proof The O.n lg n/ upper bounds on the running times for heapsort and merge 
sort match the �.n lg n/ worst-case lower bound from Theorem 8.1. 
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Exercises 

8.1-1 
What is the smallest possible depth of a leaf in a decision tree for a comparison 
sort? 

8.1-2 
Obtain asymptotically tight bounds on lg.nŠ/ without using Stirling’s approxi- 
mation. Instead, evaluate the summation 

P n 
kD1 lg k using techniques from Sec- 

tion A.2. 

8.1-3 
Show that there is no comparison sort whose running time is linear for at least half 
of the nŠ inputs of length n. What about a fraction of 1=n of the inputs of length n? 
What about a fraction 1=2 n ? 

8.1-4 
You are given an n-element input sequence, and you know in advance that it is 
partly sorted in the following sense. Each element initially in position i such that 
i mod 4 D 0 is either already in its correct position, or it is one place away from 
its correct position. For example, you know that after sorting, the element initially 
in position 12 belongs in position 11, 12, or 13. You have no advance information 
about the other elements, in positions i where i mod 4 ¤ 0. Show that an �.n lg n/ 
lower bound on comparison-based sorting still holds in this case. 

8.2 Counting sort 

Counting sort assumes that each of the n input elements is an integer in the range 
0 to k, for some integer k. It runs in ‚.n C k/ time, so that when k D O.n/, 
counting sort runs in ‚.n/ time. 
Counting sort ûrst determines, for each input element x , the number of elements 

less than or equal to x . It then uses this information to place element x directly into 
its position in the output array. For example, if 17 elements are less than or equal 
to x , then x belongs in output position 17. We must modify this scheme slightly 
to handle the situation in which several elements have the same value, since we do 
not want them all to end up in the same position. 

The COUNTING-SORT procedure on the facing page takes as input an array 
AŒ1 W n�, the size n of this array, and the limit k on the nonnegative integer values 
in A. It returns its sorted output in the array BŒ1 W n� and uses an array CŒ0 W k� for 
temporary working storage. 
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COUNTING-SORT.A; n; k/ 

1 let BŒ1 W n� and CŒ0 W k� be new arrays 
2 for i D 0 to k 
3 CŒi� D 0 
4 for j D 1 to n 
5 CŒAŒj �� D CŒAŒj �� C 1 
6 // C Œi� now contains the number of elements equal to i . 
7 for i D 1 to k 
8 CŒi� D C Œi� C CŒi  1� 
9 // C Œi� now contains the number of elements less than or equal to i . 
10 // Copy A to B , starting from the end of A. 
11 for j D n downto 1 
12 BŒC ŒAŒj ��� D AŒj � 
13 CŒAŒj �� D CŒAŒj ��  1 // to handle duplicate values 
14 return B 

Figure 8.2 illustrates counting sort. After the for loop of lines 233 initializes the 
array C to all zeros, the for loop of lines 435 makes a pass over the array A to 
inspect each input element. Each time it ûnds an input element whose value is i , it 
increments CŒi�. Thus, after line 5, CŒi� holds the number of input elements equal 
to i for each integer i D 0; 1; : : : ; k. Lines 738 determine for each i D 0; 1; : : : ; k 
how many input elements are less than or equal to i by keeping a running sum of 
the array C . 

Finally, the for loop of lines 11313 makes another pass over A, but in reverse, 
to place each element AŒj � into its correct sorted position in the output array B . 
If all n elements are distinct, then when line 11 is ûrst entered, for each AŒj �, the 
value CŒAŒj �� is the correct ûnal position of AŒj � in the output array, since there 
are CŒAŒj �� elements less than or equal to AŒj �. Because the elements might not 
be distinct, the loop decrements CŒAŒj �� each time it places a value AŒj � into B . 
Decrementing CŒAŒj �� causes the previous element in A with a value equal to AŒj �, 
if one exists, to go to the position immediately before AŒj � in the output array B . 
How much time does counting sort require? The for loop of lines 233 takes ‚.k/ 

time, the for loop of lines 435 takes ‚.n/ time, the for loop of lines 738 takes ‚.k/ 
time, and the for loop of lines 11313 takes ‚.n/ time. Thus, the overall time is 
‚.k C n/. In practice, we usually use counting sort when we have k D O.n/, in 
which case the running time is ‚.n/. 

Counting sort can beat the lower bound of �.n lg n/ proved in Section 8.1 be- 
cause it is not a comparison sort. In fact, no comparisons between input elements 
occur anywhere in the code. Instead, counting sort uses the actual values of the 
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Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 W 8�, where each element of A 
is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after line 5. 
(b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one, two, and 
three iterations of the loop in lines 11313, respectively. Only the tan elements of array B have been 
ûlled in. (f) The ûnal sorted output array B. 

elements to index into an array. The �.n lg n/ lower bound for sorting does not 
apply when we depart from the comparison sort model. 

An important property of counting sort is that it is stable: elements with the same 
value appear in the output array in the same order as they do in the input array. That 
is, it breaks ties between two elements by the rule that whichever element appears 
ûrst in the input array appears ûrst in the output array. Normally, the property of 
stability is important only when satellite data are carried around with the element 
being sorted. Counting sort’s stability is important for another reason: counting 
sort is often used as a subroutine in radix sort. As we shall see in the next section, 
in order for radix sort to work correctly, counting sort must be stable. 

Exercises 

8.2-1 
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the 
array A D h6; 0; 2; 0; 1; 3; 4; 6; 1; 3; 2i. 

8.2-2 
Prove that COUNTING-SORT is stable. 
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8.2-3 
Suppose that we were to rewrite the for loop header in line 11 of the COUNTING- 
SORT as 

11 for j D 1 to n 

Show that the algorithm still works properly, but that it is not stable. Then rewrite 
the pseudocode for counting sort so that elements with the same value are written 
into the output array in order of increasing index and the algorithm is stable. 

8.2-4 
Prove the following loop invariant for COUNTING-SORT: 

At the start of each iteration of the for loop of lines 11313, the last element 
in A with value i that has not yet been copied into B belongs in BŒC Œi ��. 

8.2-5 
Suppose that the array being sorted contains only integers in the range 0 to k and 
that there are no satellite data to move with those keys. Modify counting sort to 
use just the arrays A and C , putting the sorted result back into array A instead of 
into a new array B . 

8.2-6 
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its 
input and then answers any query about how many of the n integers fall into a 
range Œa W b� in O.1/ time. Your algorithm should use ‚.n C k/ preprocessing 
time. 

8.2-7 
Counting sort can also work efûciently if the input values have fractional parts, but 
the number of digits in the fractional part is small. Suppose that you are given n 
numbers in the range 0 to k, each with at most d decimal (base 10) digits to the 
right of the decimal point. Modify counting sort to run in ‚.n C 10 d k/ time. 

8.3 Radix sort 

Radix sort is the algorithm used by the card-sorting machines you now ûnd only in 
computer museums. The cards have 80 columns, and in each column a machine can 
punch a hole in one of 12 places. The sorter can be mechanically <programmed= 
to examine a given column of each card in a deck and distribute the card into one 
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Figure 8.3 The operation of radix sort on seven 3-digit numbers. The leftmost column is the input. 
The remaining columns show the numbers after successive sorts on increasingly signiûcant digit 
positions. Tan shading indicates the digit position sorted on to produce each list from the previous 
one. 

of 12 bins depending on which place has been punched. An operator can then 
gather the cards bin by bin, so that cards with the ûrst place punched are on top of 
cards with the second place punched, and so on. 
For decimal digits, each column uses only 10 places. (The other two places are 

reserved for encoding nonnumeric characters.) A d -digit number occupies a ûeld 
of d columns. Since the card sorter can look at only one column at a time, the 
problem of sorting n cards on a d -digit number requires a sorting algorithm. 

Intuitively, you might sort numbers on their most significant (leftmost) digit, 
sort each of the resulting bins recursively, and then combine the decks in order. 
Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of 
the bins, this procedure generates many intermediate piles of cards that you would 
have to keep track of. (See Exercise 8.3-6.) 
Radix sort solves the problem of card sorting4counterintuitively4by sorting on 

the least significant digit ûrst. The algorithm then combines the cards into a single 
deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the 
cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least 
signiûcant digit and recombines the deck in a like manner. The process continues 
until the cards have been sorted on all d digits. Remarkably, at that point the cards 
are fully sorted on the d -digit number. Thus, only d passes through the deck are 
required to sort. Figure 8.3 shows how radix sort operates on a <deck= of seven 
3-digit numbers. 

In order for radix sort to work correctly, the digit sorts must be stable. The sort 
performed by a card sorter is stable, but the operator must be careful not to change 
the order of the cards as they come out of a bin, even though all the cards in a bin 
have the same digit in the chosen column. 
In a typical computer, which is a sequential random-access machine, we some- 

times use radix sort to sort records of information that are keyed by multiple ûelds. 
For example, we might wish to sort dates by three keys: year, month, and day. We 
could run a sorting algorithm with a comparison function that, given two dates, 
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compares years, and if there is a tie, compares months, and if another tie occurs, 
compares days. Alternatively, we could sort the information three times with a 
stable sort: ûrst on day (the <least signiûcant= part), next on month, and ûnally on 
year. 

The code for radix sort is straightforward. The RADIX-SORT procedure assumes 
that each element in array AŒ1 W n� has d digits, where digit 1 is the lowest-order 
digit and digit d is the highest-order digit. 

RADIX-SORT.A; n; d/ 

1 for i D 1 to d 
2 use a stable sort to sort array AŒ1 W n� on digit i 

Although the pseudocode for RADIX-SORT does not specify which stable sort to 
use, COUNTING-SORT is commonly used. If you use COUNTING-SORT as the sta- 
ble sort, you can make RADIX-SORT a little more efûcient by revising COUNTING- 
SORT to take a pointer to the output array as a parameter, having RADIX-SORT 

preallocate this array, and alternating input and output between the two arrays in 
successive iterations of the for loop in RADIX-SORT. 

Lemma 8.3 
Given n d -digit numbers in which each digit can take on up to k possible values, 
RADIX-SORT correctly sorts these numbers in ‚.d.n C k// time if the stable sort 
it uses takes ‚.n C k/ time. 

Proof The correctness of radix sort follows by induction on the column being 
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable 
sort used as the intermediate sorting algorithm. When each digit lies in the range 0 
to k  1 (so that it can take on k possible values), and k is not too large, counting 
sort is the obvious choice. Each pass over n d -digit numbers then takes ‚.n C k/ 
time. There are d passes, and so the total time for radix sort is ‚.d.n C k//. 

When d is constant and k D O.n/, we can make radix sort run in linear time. 
More generally, we have some üexibility in how to break each key into digits. 

Lemma 8.4 
Given n b-bit numbers and any positive integer r හ b, RADIX-SORT correctly sorts 
these numbers in ‚..b=r/.n C 2 r // time if the stable sort it uses takes ‚.n C k/ 
time for inputs in the range 0 to k. 
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Proof For a value r හ b, view each key as having d D db=r e digits of r bits 
each. Each digit is an integer in the range 0 to 2 r  1, so that we can use counting 
sort with k D 2 r  1. (For example, we can view a 32-bit word as having four 8-bit 
digits, so that b D 32, r D 8, k D 2 r  1 D 255, and d D b=r D 4.) Each pass of 
counting sort takes ‚.n C k/ D ‚.n C 2 r / time and there are d passes, for a total 
running time of ‚.d.n C 2 r // D ‚..b=r/.n C 2 r //. 

Given n and b, what value of r හ b minimizes the expression .b=r/.n C 2 r /? 
As r decreases, the factor b=r increases, but as r increases so does 2 r . The answer 
depends on whether b < blg nc. If b < blg nc, then r හ b implies .nC2 r / D ‚.n/. 
Thus, choosing r D b yields a running time of .b=b/.n C 2 b / D ‚.n/, which is 
asymptotically optimal. If b  blg nc, then choosing r D blg nc gives the best 
running time to within a constant factor, which we can see as follows. 1 Choosing 
r D blg nc yields a running time of ‚.bn= lg n/. As r increases above blg nc, the 
2 r term in the numerator increases faster than the r term in the denominator, and so 
increasing r above blg nc yields a running time of �.bn= lg n/. If instead r were 
to decrease below blg nc, then the b=r term increases and the n C 2 r term remains 
at ‚.n/. 
Is radix sort preferable to a comparison-based sorting algorithm, such as quick- 

sort? If b D O.lg n/, as is often the case, and r  lg n, then radix sort’s running 
time is ‚.n/, which appears to be better than quicksort’s expected running time 
of ‚.n lg n/. The constant factors hidden in the ‚-notation differ, however. Al- 
though radix sort may make fewer passes than quicksort over the n keys, each 
pass of radix sort may take signiûcantly longer. Which sorting algorithm to prefer 
depends on the characteristics of the implementations, of the underlying machine 
(e.g., quicksort often uses hardware caches more effectively than radix sort), and 
of the input data. Moreover, the version of radix sort that uses counting sort as the 
intermediate stable sort does not sort in place, which many of the ‚.n lg n/-time 
comparison sorts do. Thus, when primary memory storage is at a premium, an 
in-place algorithm such as quicksort could be the better choice. 

Exercises 

8.3-1 
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol- 
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, 
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX. 

1 The choice of r D blg nc assumes that n > 1. If n හ 1, there is nothing to sort. 
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8.3-2 
Which of the following sorting algorithms are stable: insertion sort, merge sort, 
heapsort, and quicksort? Give a simple scheme that makes any comparison sort 
stable. How much additional time and space does your scheme entail? 

8.3-3 
Use induction to prove that radix sort works. Where does your proof need the 
assumption that the intermediate sort is stable? 

8.3-4 
Suppose that COUNTING-SORT is used as the stable sort within RADIX-SORT. If 
RADIX-SORT calls COUNTING-SORT d times, then since each call of COUNTING- 
SORT makes two passes over the data (lines 435 and 11313), altogether 2d passes 
over the data occur. Describe how to reduce the total number of passes to d C 1. 

8.3-5 
Show how to sort n integers in the range 0 to n 3  1 in O.n/ time. 

? 8.3-6 
In the ûrst card-sorting algorithm in this section, which sorts on the most signiûcant 
digit ûrst, exactly how many sorting passes are needed to sort d -digit decimal 
numbers in the worst case? How many piles of cards does an operator need to keep 
track of in the worst case? 

8.4 Bucket sort 

Bucket sort assumes that the input is drawn from a uniform distribution and has an 
average-case running time of O.n/. Like counting sort, bucket sort is fast because 
it assumes something about the input. Whereas counting sort assumes that the input 
consists of integers in a small range, bucket sort assumes that the input is generated 
by a random process that distributes elements uniformly and independently over 
the interval Œ0; 1/. (See Section C.2 for a deûnition of a uniform distribution.) 

Bucket sort divides the interval Œ0; 1/ into n equal-sized subintervals, or buckets, 
and then distributes the n input numbers into the buckets. Since the inputs are uni- 
formly and independently distributed over Œ0; 1/, we do not expect many numbers 
to fall into each bucket. To produce the output, we simply sort the numbers in each 
bucket and then go through the buckets in order, listing the elements in each. 

The BUCKET-SORT procedure on the next page assumes that the input is an 
array AŒ1 W n� and that each element AŒi� in the array satisûes 0 හ AŒi� < 1. The 
code requires an auxiliary array BŒ0 W n  1� of linked lists (buckets) and assumes 
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Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 W 10�. (b) The 
array BŒ0 W 9� of sorted lists (buckets) after line 7 of the algorithm, with slashes indicating the end of 
each bucket. Bucket i holds values in the half-open interval Œi=10; .i C 1/=10/. The sorted output 
consists of a concatenation of the lists BŒ0�; BŒ1�; : : : ; BŒ9� in order. 

that there is a mechanism for maintaining such lists. (Section 10.2 describes how 
to implement basic operations on linked lists.) Figure 8.4 shows the operation of 
bucket sort on an input array of 10 numbers. 

BUCKET-SORT.A; n/ 

1 let BŒ0 W n  1� be a new array 
2 for i D 0 to n  1 
3 make BŒi� an empty list 
4 for i D 1 to n 
5 insert AŒi� into list BŒbn  AŒi�c� 
6 for i D 0 to n  1 
7 sort list BŒi� with insertion sort 
8 concatenate the lists BŒ0�;BŒ1�; : : : ; BŒn  1� together in order 
9 return the concatenated lists 

To see that this algorithm works, consider two elements AŒi� and AŒj �. Assume 
without loss of generality that AŒi� හ AŒj �. Since bn  AŒi�c හ bn  AŒj �c, either 
element AŒi� goes into the same bucket as AŒj � or it goes into a bucket with a lower 
index. If AŒi� and AŒj � go into the same bucket, then the for loop of lines 637 puts 
them into the proper order. If AŒi� and AŒj � go into different buckets, then line 8 
puts them into the proper order. Therefore, bucket sort works correctly. 
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To analyze the running time, observe that, together, all lines except line 7 take 
O.n/ time in the worst case. We need to analyze the total time taken by the n calls 
to insertion sort in line 7. 

To analyze the cost of the calls to insertion sort, let n i be the random variable 
denoting the number of elements placed in bucket BŒi�. Since insertion sort runs 
in quadratic time (see Section 2.2), the running time of bucket sort is 

T .n/ D ‚.n/ C 
n1 X 

i D0 

O.n 2 
i / : (8.1) 

We now analyze the average-case running time of bucket sort, by computing the 
expected value of the running time, where we take the expectation over the input 
distribution. Taking expectations of both sides and using linearity of expectation 
(equation (C.24) on page 1192), we have 

E ŒT .n/� D E 

" 

‚.n/ C 
n1 X 

i D0 

O.n 2 
i / 

# 

D ‚.n/ C 
n1 X 

i D0 

E 
í 
O.n 2 

i / 
î 

(by linearity of expectation) 

D ‚.n/ C 
n1 X 

i D0 

O 
ã 
E 
í 
n 2 
i 

îä 
(by equation (C.25) on page 1193) . (8.2) 

We claim that 

E 
í 
n 2 
i 

î 
D 2  1=n (8.3) 

for i D 0; 1; : : : ; n  1. It is no surprise that each bucket i has the same value 
of E Œn 2 

i �, since each value in the input array A is equally likely to fall in any 
bucket. 
To prove equation (8.3), view each random variable n i as the number of suc- 

cesses in n Bernoulli trials (see Section C.4). Success in a trial occurs when 
an element goes into bucket BŒi�, with a probability p D 1=n of success and 
q D 1  1=n of failure. A binomial distribution counts n i , the number of suc- 
cesses, in the n trials. By equations (C.41) and (C.44) on pages 119931200, we 
have E Œn i � D np D n.1=n/ D 1 and Var Œn i � D npq D 1  1=n. Equation (C.31) 
on page 1194 gives 

E 
í 
n 2 
i 

î 
D Var Œn i � C E 2 Œn i � 

D .1  1=n/ C 1 2 

D 2  1=n ; 
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which proves equation (8.3). Using this expected value in equation (8.2), we get 
that the average-case running time for bucket sort is ‚.n/ Cn  O.2 1=n/ D ‚.n/. 

Even if the input is not drawn from a uniform distribution, bucket sort may still 
run in linear time. As long as the input has the property that the sum of the squares 
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us 
that bucket sort runs in linear time. 

Exercises 

8.4-1 
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array 
A D h:79; :13; :16; :64; :39; :20; :89; :53; :71; :42 i. 

8.4-2 
Explain why the worst-case running time for bucket sort is ‚.n 2 /. What simple 
change to the algorithm preserves its linear average-case running time and makes 
its worst-case running time O.n lg n/? 

8.4-3 
Let X be a random variable that is equal to the number of heads in two üips of a 
fair coin. What is E ŒX 2 �? What is E 2 ŒX�? 

8.4-4 
An array A of size n > 10 is ûlled in the following way. For each element AŒi�, 
choose two random variables x i and y i uniformly and independently from Œ0; 1/. 
Then set 

AŒi� D 
b10x i c 

10 
C 

y i 
n 

: 

Modify bucket sort so that it sorts the array A in O.n/ expected time. 

? 8.4-5 
You are given n points in the unit disk, p i D .x i ; y i /, such that 0 < x 2 

i C y 2 
i හ 1 

for i D 1; 2; : : : ; n. Suppose that the points are uniformly distributed, that is, the 
probability of ûnding a point in any region of the disk is proportional to the area 
of that region. Design an algorithm with an average-case running time of ‚.n/ to 
sort the n points by their distances d i D 

p 
x 2 
i C y 2 

i from the origin. (Hint: Design 
the bucket sizes in BUCKET-SORT to reüect the uniform distribution of the points 
in the unit disk.) 

? 8.4-6 
A probability distribution function P.x/ for a random variable X is deûned 
by P.x/ D Pr fX හ x g. Suppose that you draw a list of n random variables 
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X 1 ; X 2 ; : : : ; X n from a continuous probability distribution function P that is com- 
putable in O.1/ time (given y you can ûnd x such that P.x/ D y in O.1/ time). 
Give an algorithm that sorts these numbers in linear average-case time. 

Problems 

8-1 Probabilistic lower bounds on comparison sorting 
In this problem, you will prove a probabilistic �.n lg n/ lower bound on the run- 
ning time of any deterministic or randomized comparison sort on n distinct input 
elements. You’ll begin by examining a deterministic comparison sort A with deci- 
sion tree T A . Assume that every permutation of A’s inputs is equally likely. 

a. Suppose that each leaf of T A is labeled with the probability that it is reached 
given a random input. Prove that exactly nŠ leaves are labeled 1=nŠ and that the 
rest are labeled 0. 

b. Let D.T / denote the external path length of a decision tree T 4the sum of the 
depths of all the leaves of T . Let T be a decision tree with k > 1 leaves, 
and let LT and RT be the left and right subtrees of T . Show that D.T / D 
D.LT / C D.RT / C k. 

c. Let d.k/ be the minimum value of D.T / over all decision trees T with k > 1 
leaves. Show that d.k/ D min fd.i/ C d.k  i/ C k W 1 හ i හ k  1g. (Hint: 
Consider a decision tree T with k leaves that achieves the minimum. Let i 0 be 
the number of leaves in LT and k  i 0 the number of leaves in RT .) 

d. Prove that for a given value of k > 1 and i in the range 1 හ i හ k  1, the 
function i lg i C .k  i/ lg.k  i/ is minimized at i D k=2. Conclude that 
d.k/ D �.k lg k/. 

e. Prove that D.T A / D �.nŠ lg.nŠ//, and conclude that the average-case time to 
sort n elements is �.n lg n/. 

Now consider a randomized comparison sort B . We can extend the decision-tree 
model to handle randomization by incorporating two kinds of nodes: ordinary com- 
parison nodes and <randomization= nodes. A randomization node models a random 
choice of the form RANDOM.1; r/ made by algorithm B . The node has r children, 
each of which is equally likely to be chosen during an execution of the algorithm. 

f. Show that for any randomized comparison sort B , there exists a deterministic 
comparison sort A whose expected number of comparisons is no more than 
those made by B . 
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8-2 Sorting in place in linear time 
You have an array of n data records to sort, each with a key of 0 or 1. An algorithm 
for sorting such a set of records might possess some subset of the following three 
desirable characteristics: 

1. The algorithm runs in O.n/ time. 

2. The algorithm is stable. 

3. The algorithm sorts in place, using no more than a constant amount of storage 
space in addition to the original array. 

a. Give an algorithm that satisûes criteria 1 and 2 above. 

b. Give an algorithm that satisûes criteria 1 and 3 above. 

c. Give an algorithm that satisûes criteria 2 and 3 above. 

d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting 
method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records 
with b-bit keys in O.bn/ time? Explain how or why not. 

e. Suppose that the n records have keys in the range from 1 to k. Show how to 
modify counting sort so that it sorts the records in place in O.n C k/ time. You 
may use O.k/ storage outside the input array. Is your algorithm stable? 

8-3 Sorting variable-length items 
a. You are given an array of integers, where different integers may have different 

numbers of digits, but the total number of digits over all the integers in the array 
is n. Show how to sort the array in O.n/ time. 

b. You are given an array of strings, where different strings may have different 
numbers of characters, but the total number of characters over all the strings 
is n. Show how to sort the strings in O.n/ time. (The desired order is the 
standard alphabetical order: for example, a < ab < b.) 

8-4 Water jugs 
You are given n red and n blue water jugs, all of different shapes and sizes. All the 
red jugs hold different amounts of water, as do all the blue jugs, and you cannot 
tell from the size of a jug how much water it holds. Moreover, for every jug of one 
color, there is a jug of the other color that holds the same amount of water. 

Your task is to group the jugs into pairs of red and blue jugs that hold the same 
amount of water. To do so, you may perform the following operation: pick a pair 
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of jugs in which one is red and one is blue, ûll the red jug with water, and then pour 
the water into the blue jug. This operation tells you whether the red jug or the blue 
jug can hold more water, or that they have the same volume. Assume that such 
a comparison takes one time unit. Your goal is to ûnd an algorithm that makes a 
minimum number of comparisons to determine the grouping. Remember that you 
may not directly compare two red jugs or two blue jugs. 

a. Describe a deterministic algorithm that uses ‚.n 2 / comparisons to group the 
jugs into pairs. 

b. Prove a lower bound of �.n lg n/ for the number of comparisons that an algo- 
rithm solving this problem must make. 

c. Give a randomized algorithm whose expected number of comparisons is 
O.n lg n/, and prove that this bound is correct. What is the worst-case num- 
ber of comparisons for your algorithm? 

8-5 Average sorting 
Suppose that, instead of sorting an array, we just require that the elements increase 
on average. More precisely, we call an n-element array A k-sorted if, for all 
i D 1; 2; : : : ; n  k, the following holds: P i Ck1 

j Di AŒj � 

k 
හ 

P i Ck 
j Di C1 AŒj � 

k 
: 

a. What does it mean for an array to be 1-sorted? 

b. Give a permutation of the numbers 1; 2; : : : ; 10 that is 2-sorted, but not sorted. 

c. Prove that an n-element array is k-sorted if and only if AŒi� හ AŒi C k� for all 
i D 1; 2; : : : ; n  k. 

d. Give an algorithm that k-sorts an n-element array in O.n lg.n=k// time. 

We can also show a lower bound on the time to produce a k-sorted array, when k 
is a constant. 

e. Show how to sort a k-sorted array of length n in O.n lg k/ time. (Hint: Use the 
solution to Exercise 6.5-11.) 

f. Show that when k is a constant, k-sorting an n-element array requires �.n lg n/ 
time. (Hint: Use the solution to part (e) along with the lower bound on compar- 
ison sorts.) 
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8-6 Lower bound on merging sorted lists 
The problem of merging two sorted lists arises frequently. We have seen a proce- 
dure for it as the subroutine MERGE in Section 2.3.1. In this problem, you will 
prove a lower bound of 2n  1 on the worst-case number of comparisons required 
to merge two sorted lists, each containing n items. First, you will show a lower 
bound of 2n  o.n/ comparisons by using a decision tree. 

a. Given 2n numbers, compute the number of possible ways to divide them into 
two sorted lists, each with n numbers. 

b. Using a decision tree and your answer to part (a), show that any algorithm that 
correctly merges two sorted lists must perform at least 2n  o.n/ comparisons. 

Now you will show a slightly tighter 2n  1 bound. 

c. Show that if two elements are consecutive in the sorted order and from different 
lists, then they must be compared. 

d. Use your answer to part (c) to show a lower bound of 2n  1 comparisons for 
merging two sorted lists. 

8-7 The 0-1 sorting lemma and columnsort 
A compare-exchange operation on two array elements AŒi� and AŒj �, where i < j , 
has the form 

COMPARE-EXCHANGE .A; i; j / 

1 if AŒi� > AŒj � 
2 exchange AŒi� with AŒj � 

After the compare-exchange operation, we know that AŒi� හ AŒj �. 
An oblivious compare-exchange algorithm operates solely by a sequence of 

prespeciûed compare-exchange operations. The indices of the positions compared 
in the sequence must be determined in advance, and although they can depend 
on the number of elements being sorted, they cannot depend on the values being 
sorted, nor can they depend on the result of any prior compare-exchange operation. 
For example, the COMPARE-EXCHANGE-I NSERTION-SORT procedure on the fac- 
ing page shows a variation of insertion sort as an oblivious compare-exchange algo- 
rithm. (Unlike the I NSERTION-SORT procedure on page 19, the oblivious version 
runs in ‚.n 2 / time in all cases.) 

The 0-1 sorting lemma provides a powerful way to prove that an oblivious 
compare-exchange algorithm produces a sorted result. It states that if an oblivi- 
ous compare-exchange algorithm correctly sorts all input sequences consisting of 
only 0s and 1s, then it correctly sorts all inputs containing arbitrary values. 
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COMPARE-EXCHANGE-I NSERTION-SORT .A; n/ 

1 for i D 2 to n 
2 for j D i  1 downto 1 
3 COMPARE-EXCHANGE .A; j; j C 1/ 

You will prove the 0-1 sorting lemma by proving its contrapositive: if an oblivi- 
ous compare-exchange algorithm fails to sort an input containing arbitrary values, 
then it fails to sort some 0-1 input. Assume that an oblivious compare-exchange 
algorithm X fails to correctly sort the array AŒ1 W n�. Let AŒp� be the smallest value 
in A that algorithm X puts into the wrong location, and let AŒq� be the value that 
algorithm X moves to the location into which AŒp� should have gone. Deûne an 
array BŒ1 W n� of 0s and 1s as follows: 

BŒi� D 

( 
0 if AŒi� හ AŒp� ; 

1 if AŒi� > AŒp� : 

a. Argue that AŒq� > AŒp�, so that BŒp� D 0 and BŒq� D 1. 

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm X fails to 
sort array B correctly. 

Now you will use the 0-1 sorting lemma to prove that a particular sorting algo- 
rithm works correctly. The algorithm, columnsort, works on a rectangular array 
of n elements. The array has r rows and s columns (so that n D rs ), subject to 
three restrictions: 

 r must be even, 

 s must be a divisor of r , and 

 r  2s 2 . 

When columnsort completes, the array is sorted in column-major order: reading 
down each column in turn, from left to right, the elements monotonically increase. 

Columnsort operates in eight steps, regardless of the value of n. The odd steps 
are all the same: sort each column individually. Each even step is a ûxed permuta- 
tion. Here are the steps: 

1. Sort each column. 

2. Transpose the array, but reshape it back to r rows and s columns. In other 
words, turn the leftmost column into the top r=s rows, in order; turn the next 
column into the next r=s rows, in order; and so on. 
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10 14 5 
8 7 17 
12 1 6 
16 9 11 
4 15 2 
18 3 13 

(a) 

4 1 2 
8 3 5 
10 7 6 
12 9 11 
16 14 13 
18 15 17 

(b) 

4 8 10 
12 16 18 
1 3 7 
9 14 15 
2 5 6 
11 13 17 

(c) 

1 3 6 
2 5 7 
4 8 10 
9 13 15 
11 14 17 
12 16 18 

(d) 

1 4 11 
3 8 14 
6 10 17 
2 9 12 
5 13 16 
7 15 18 

(e) 

1 4 11 
2 8 12 
3 9 14 
5 10 16 
6 13 17 
7 15 18 

(f) 

5 10 16 
6 13 17 
7 15 18 

1 4 11 
2 8 12 
3 9 14 

(g) 

4 10 16 
5 11 17 
6 12 18 

1 7 13 
2 8 14 
3 9 15 

(h) 

1 7 13 
2 8 14 
3 9 15 
4 10 16 
5 11 17 
6 12 18 

(i) 

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (This example 
does not obey the r  2s 2 requirement, but it works.) (b) After sorting each column in step 1. 
(c) After transposing and reshaping in step 2. (d) After sorting each column in step 3. (e) After 
performing step 4, which inverts the permutation from step 2 . (f) After sorting each column in 
step 5. (g) After shifting by half a column in step 6. (h) After sorting each column in step 7. (i) After 
performing step 8, which inverts the permutation from step 6. Steps 638 sort the bottom half of each 
column with the top half of the next column. After step 8, the array is sorted in column-major order. 

3. Sort each column. 

4. Perform the inverse of the permutation performed in step 2. 

5. Sort each column. 

6. Shift the top half of each column into the bottom half of the same column, and 
shift the bottom half of each column into the top half of the next column to the 
right. Leave the top half of the leftmost column empty. Shift the bottom half 
of the last column into the top half of a new rightmost column, and leave the 
bottom half of this new column empty. 

7. Sort each column. 

8. Perform the inverse of the permutation performed in step 6. 

You can think of steps 638 as a single step that sorts the bottom half of each column 
and the top half of the next column. Figure 8.5 shows an example of the steps 
of columnsort with r D 6 and s D 3. (Even though this example violates the 
requirement that r  2s 2 , it happens to work.) 

c. Argue that we can treat columnsort as an oblivious compare-exchange algo- 
rithm, even if we do not know what sorting method the odd steps use. 
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Although it might seem hard to believe that columnsort actually sorts, you will 
use the 0-1 sorting lemma to prove that it does. The 0-1 sorting lemma applies 
because we can treat columnsort as an oblivious compare-exchange algorithm. A 
couple of deûnitions will help you apply the 0-1 sorting lemma. We say that an 
area of an array is clean if we know that it contains either all 0s or all 1s or if it is 
empty. Otherwise, the area might contain mixed 0s and 1s, and it is dirty. From 
here on, assume that the input array contains only 0s and 1s, and that we can treat 
it as an array with r rows and s columns. 

d. Prove that after steps 133, the array consists of clean rows of 0s at the top, clean 
rows of 1s at the bottom, and at most s dirty rows between them. (One of the 
clean rows could be empty.) 

e. Prove that after step 4, the array, read in column-major order, starts with a clean 
area of 0s, ends with a clean area of 1s, and has a dirty area of at most s 2 

elements in the middle. (Again, one of the clean areas could be empty.) 

f. Prove that steps 538 produce a fully sorted 0-1 output. Conclude that column- 
sort correctly sorts all inputs containing arbitrary values. 

g. Now suppose that s does not divide r . Prove that after steps 133, the array 
consists of clean rows of 0s at the top, clean rows of 1s at the bottom, and at 
most 2s  1 dirty rows between them. (Once again, one of the clean areas could 
be empty.) How large must r be, compared with s , for columnsort to correctly 
sort when s does not divide r ? 

h. Suggest a simple change to step 1 that allows us to maintain the requirement 
that r  2s 2 even when s does not divide r , and prove that with your change, 
columnsort correctly sorts. 

Chapter notes 

The decision-tree model for studying comparison sorts was introduced by Ford 
and Johnson [150]. Knuth’s comprehensive treatise on sorting [261] covers many 
variations on the sorting problem, including the information-theoretic lower bound 
on the complexity of sorting given here. Ben-Or [46] studied lower bounds for 
sorting using generalizations of the decision-tree model. 
Knuth credits H. H. Seward with inventing counting sort in 1954, as well as with 

the idea of combining counting sort with radix sort. Radix sorting starting with the 
least signiûcant digit appears to be a folk algorithm widely used by operators of 
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mechanical card-sorting machines. According to Knuth, the ûrst published refer- 
ence to the method is a 1929 document by L. J. Comrie describing punched-card 
equipment. Bucket sorting has been in use since 1956, when the basic idea was 
proposed by Isaac and Singleton [235]. 
Munro and Raman [338] give a stable sorting algorithm that performs O.n 1C / 

comparisons in the worst case, where 0 < � හ 1 is any ûxed constant. Although 
any of the O.n lg n/-time algorithms make fewer comparisons, the algorithm by 
Munro and Raman moves data only O.n/ times and operates in place. 

The case of sorting n b-bit integers in o.n lg n/ time has been considered by 
many researchers. Several positive results have been obtained, each under slightly 
different assumptions about the model of computation and the restrictions placed 
on the algorithm. All the results assume that the computer memory is divided into 
addressable b-bit words. Fredman and Willard [157] introduced the fusion tree data 
structure and used it to sort n integers in O.n lg n= lg lg n/ time. This bound was 
later improved to O.n 

p 
lg n/ time by Andersson [17]. These algorithms require 

the use of multiplication and several precomputed constants. Andersson, Hagerup, 
Nilsson, and Raman [18] have shown how to sort n integers in O.n lg lg n/ time 
without using multiplication, but their method requires storage that can be un- 
bounded in terms of n. Using multiplicative hashing, we can reduce the storage 
needed to O.n/, but then the O.n lg lg n/ worst-case bound on the running time 
becomes an expected-time bound. Generalizing the exponential search trees of 
Andersson [17], Thorup [434] gave an O.n.lg lg n/ 2 /-time sorting algorithm that 
does not use multiplication or randomization, and it uses linear space. Combining 
these techniques with some new ideas, Han [207] improved the bound for sorting 
to O.n lg lg n lg lg lg n/ time. Although these algorithms are important theoretical 
breakthroughs, they are all fairly complicated and at the present time seem unlikely 
to compete with existing sorting algorithms in practice. 
The columnsort algorithm in Problem 8-7 is by Leighton [286]. 


